
ID EF3 and ID EF4

A utoma tion System
Requirements Document

and

System Environment Models

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Thomas M. Blinn of Knowledge Based Systems,

Inc. Dr. Peter C. Bishop, Director of the Space Business Research Center, UHCL,
served as RICIS research coordinator.

Funding has been provided by the NASA Information Systems Directorate,

NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA Johnson

Space Center and the University of Houston-Clear Lake. The NASA technical monitor

for this activity was Robert T. Savely, of the Software Technology Branch, Information

Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

IDEF3 and IDEF4 Automation

System Requirements Document
and System Environment Models

An Interim Technical Report

Developed By: Knowledge Based Systems, Inc.

2746 Longmire Drive

College Station, TX 77845-5424

(409) 696-7979

Principal Investigator: Thomas M. Blinn

Developed For: Artificial Intelligence Section

NASA Johnson Space Center

Houston, TX 77058

Under Subcontract to: RICIS Program

University of Houston - Clear Lake

Houston, Texas 77058-1096

Subcontract Number 055:

Cooperative Agreement Number: NCC 9-16

August 1, 1989- November 20, 1989

Table of Contents

1.0

2.0

3.0

Introduction ... 1

Knowledged Based Meta-Requirements .. 4

IDEF3 Requirements .. 6

3.1 IDEF3 Entity Requirements .. 6

3.1.1 Process Flow Entity Requirements ... 6

3.1.1.1 Unit of Behavior (UOB) ... 7

3.1.1.1.1 Create Unit of Behavior ... 8

3.1.1.1.2 Edit Unit of Behavior .. 9

3.1.1.1.3 Copy Unit of Behavior .. 9
3.1.1.1.4 Delete Unit of Behavior ... 9

3.1.1.1.5 Unit of Behavior Coercion .. 9

3.1.1.2 Link Requirements ... 1 0
3.1.1.2.1 Create Link ... 10

3.1.1.2.2 Edit Link .. 1 1

3.1.1.2.3 Copy Link .. 1 1
3.1.1.2.4 Delete Link ... 1

3.1.1.3 Junction Requirements ... 1
3.1 1.3.1 Create Junction ... 3

3.1 1.3.2 Add Link to Junction .. 3

3.1 1.3.3 Remove Link from Junction .. 3

3.1 1.3.4 Edit Junction Definition ... 1 3

3.1 1.3.5 Copy Junction .. 1 3

3.1 1.3.6 Delete Junction .. 1 3

3.1.1.4 Reference Requirements .. 1 4

3.1.1.4.1 Create Reference .. 1 4

3.1.1.4.2 Edit Reference ... 4

3.1.1.4.3 Copy Reference ... 5
3.1.1.4.4 Delete Reference .. 5

3.1.1.5 Elaboration Requirements ... 5

3.1.1.5.1 Create Elaboration ... 6

3.1.1.5.2 Edit Elaboration .. 6

3.1.1.5.3 Copy Elaboration .. 6
3.1.1.5.4 Delete Elaboration ... 6

3.1.2 Object State Transition Entity Requirements 6

3.1.2.1 Object State Requirements .. 7

3.1.2.1.1 Create Object State .. 17

3.1.2.1.2 Edit Object State ... 1 8

3.1.2.1.3 Copy Object State ... 1 8

3.2

3.1.2.1.4 Delete
3.1.2.2 Transition

3.1.2.2.1
3.1.2.2.2
3.1.2.2.3
3.1.2.2.4

Object State ..8
Arc Requirements ...8

Create State Transition Arc ...18
Edit State Transition Arc ..19
Copy State Transition Arc ..19
Delete State Transition Arc ...19

3.1.2.3 Process Description Network
References Requirements ..

3.1.2.3.1 Create Process Description
Network Reference ...19

3.1.2.3.2 Edit Process Description Network Reference20
3.1.2.3.3 Copy Process Description

Network Reference ...20
3.1.2.3.4 Delete Process Description

Network Reference ...20
IDEF3 Organization Requirements ...20

3.2.1 IDEF3 Scenario Requirements ...21
3.2.1.1 Create Scenario...21
3.2.1.2 Edit Scenario..21
3.2.1.3 Copy Scenario..21
3.2.1.4 Delete Scenario ...22
3.2.1.5 Scenario Coercion ..22

3.2.2 IDEF3 Decomposition Network Requirements22
3.2.2.1 Create Decomposition ..22
3.2.2.2 Edit Decomposition ...23
3.2.2.3 Copy Decomposition ...24
3.2.2.4 Delete Decomposition...24

3.2.3 IDEF3 Object Taxonomy Requirements..................................... 24
3.2.4 IDEF3 Scenario Correspondence Requirements 24

IDEF3 User Interface Requirements ...24
3.1 Browsing Requirements ..25
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.5
3.3.1.6
3.3.1.7
3.3.1.8

Scenario Selection ...2
Object State Transition Diagram Selection 2
Find References..2
Speed Search ...2
Decomposition Selection ...2
Parent Selection ...2
Decomposition Listing ...2
Elaboration Listing ..2

3.3.2 Group Operation Requirements.. 2
3.3.2.1 Copy Structure by Group ...2
3.3.2.2 Copy Information by Group ..2
3.3.2.3 Delete by Group ...2

5
5
5
5
6
6
6
6
7
7
7
7

ii

3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

3.5

Activation Visualization Requirement28
Report Generation Requirements ..28

3.3.4.1 Hardcopy...28
3.3.4.2 ASCII File Dump ..28
3.3.3.3 Note Attachment ...28
IDEF3 Integration Requirements.. 28

IDEFO Integration...29
IDEF1 Integration...29
Consistency Maintenance..29
Data Extraction ..29
Easy Access to Simulation Modelers ..29

IDEF3 Information Management Requirements30
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6

3.6

Model Verification ...30
Model Saving..30
Model Loading ...30
Model Database ...31
Kit Save...31
Kit Load ..31

Summary ...31

4.0
4.1

4

IDEF4 Requirements ..32
IDEF4 Concept Requirements ..32

•1.1 Class Requirements ...33
4.1.1.1 Create Class..34
4.1.1.2 Edit Class...34
4.1.1.3 Copy Class...35
4.1.1.4 Delete Class ..35
4.1.1.5 Create Class Invariant Data Sheet......................................35
4.1.1.6 Edit Class Invariant Data Sheet...35
4.1.1.7 Copy Class Invariant Data Sheet...36
4.1.1.8 Delete Class Invariant Data Sheet36

4.1.2 Feature Requirements..36
4.1.2.1 Create Feature ..38
4.1.2.2 Edit Feature ...38
4.1.2.3 Copy Feature ...39
4.1.2.4 Delete Feature...39

4.1.3 Inheritance Link Requirements... 39
4.1.3.1 Create Inheritance Link ...39
4.1.3.2 Edit Inheritance Link ..39
4.1.3.3 Copy Inheritance Link ..40
4.1.3.4 Delete Inheritance Link .. 40

4.1.4 Type Link Requirements ..40
4.1.4.1 Create Type Link ...41

iii

4.1.4.2 Edit Type Link ..42
4.1.4.3 Copy Type Link ..42
4.1.4.4 Delete Type Link ...42

4.1.5 Method Set Requirements ..42
4.1.5.1 CreateMethod Set...43
4.1.5.2 Edit Method Set..43
4.1.5.3 Copy Method Set..43
4.1.5.4 Delete Method Set...43
4.1.5.5 Create Contract Data Sheet..44
4.1.5.6 Edit Contract Data Sheet...44
4.1.5.7 Copy Contract Data Sheet...44
4.1.5.8 Delete Contract Data Sheet ..44
IDEF4 Diagram Requirements ..44

4.2.1 Class Inheritance Diagram Requirements 45
4.2.1.1 Create Class Inheritance Diagram45
4.2.1.2 Edit Class Inheritance Diagram ...47
4.2.1.3 Copy Class Inheritance Diagram ...47
4.2.1.4 Delete Class Inheritance Diagram 47

4.2.2 Type Diagram Requirements... 47
4.2.2.1 Create Type Diagram ...49
4.2.2.2 Edit Type Diagram ..49
4.2.2.3 Copy Type Diagram ..49
4.2.2.4 Delete Type Diagram..49

4.2.3 Protocol Diagram Requirements ..50
4.2.3.1 Create Protocol Diagram ...51
4.2.3.2 Edit Protocol Diagram ..51
4.2.3.3 Copy Protocol Diagram ..51
4.2.3.4 Delete Protocol Diagram ...51
4.2.3.5 Create Argument ...52
4.2.3.6 Edit Argument ..52
4.2.3.7 Copy Argument ..52
4.2.3.8 Move Argument...52
4.2.3.9 Delete Argument ...52

4.2.4 Method Taxonomy Diagram Requirements 52

4.2

.

4.2.4.1 Create Method Taxonomy Diagram 53

4.2.4.2 Edit Method Taxonomy Diagram .. 53

4.2.4.3 Copy Method Taxonomy Diagram 53

4.2.4.4 Delete Method Taxonomy Diagram 53
4.2.4.5 Create Method Set Link .. 53

4.2.4.6 Edit Method Set Link ... 54

4.2.4.7 Copy Method Set Link ... 54

4.2.4.8 Delete Method Set Link .. 54

2.5 Client Diagram Requirements ... 54

iv

4.2.5.1 Create Client Diagram .. 54

4.2.5.2 Edit Client Diagram ... 54

4.2.5.3 Copy Client Diagram ... 55

4.2.5.4 Delete Client Diagram .. 55

4.2.6 Customized Diagram Requirements .. 55

4.2.6.1 Class Inheritance/Dispatching Diagram 56

4.2.6.2 Class Inheritance/Type Diagram .. 56

IDEF4 User Interface Requirements ... 56

4.3.1 Browsing Requirements .. 57

4.3.1.1 Select Diagram .. 57

4.3.1.2 Find Diagrams ... 57

4.3.1.3 Speed Search ... 57

4.3.1.4 Class Listing ... 58

4.3.1.5 Protocol Listing .. 58

4.3.1.6 Method Set Listing .. 58

4.3.2 Group Operation Requirements .. 58

4.3.2.1 Copy Structure by Group ... 58

4.3.2.2 Copy Information by Group .. 59

4.3.2.3 Delete by Group ... 59

4.3.3 Report Generation Requirements .. 59

4.3.3.1 Hardcopy ... 59

4.3.3.2 ASCII File Dump .. 60
4.3.3.3 Note Attachment ... 60

IDEF4 Integration Requirements .. 60

IDEF4 Information Management Requirements 60

Model Verification ... 60

Model Saving .. 61

Model Loading ... 61
Model Database ... 61

Kit Save ... 61

Kit Load .. 62

Design Life Cycle Management ... 62

Summary ... 62

4.3

4.4

4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

4.5.6

4.5.7

4.6.

Appendix A

IDEFO

Appendix B
IDEF1

Appendix C

IDEFO

Appendix D
IDEF1

Model of IDEF3 ... 63

Model of IDEF3 ... 127

Model of IDEF4 ... 188

Model of IDEF4 ... 257

List of Figures

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

o

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13

14.

15.

An Example Process Flow Diagram ... 7
IDEF3 Unit of Behavior .. 8

IDEF3 Link Types ... 10
IDEF3 Junctions ... 12

IDEF3 Reference .. 14

IDEF3 Object State Description ... 17

An IDEF3 Decomposition ... 23
A Class Box .. 34

Feature Type Relationships ... 37

IDEF4 Link Types ... 41

Method Set Box ... 43

IDEF4 Inheritance Diagram .. 46

IDEF4 Type Diagram ... 48

IDEF4 Protocol Diagram ... 50

Class with Dispatching Information ... 55

vi

1.0 Introduction

This document provides the requirements specification for the IDEF3

and IDEF4 tools that provide automated support for IDEF3 and

IDEF4 modeling. The IDEF3 method is a scenario-driven process

flow description capture method intended to be used by domain

experts to represent the knowledge about how a particular system or

process works. The IDEF3 method provides modes to represent

both (1) Process Flow Description to capture the relationships

between actions within the context of a specific scenario and (2)

Object State Transition to capture the allowable transitions of an

object in the domain. The IDEF3 tool will provide automated

support for each mode of the method. The IDEF4 method is a

graphically oriented methodology for the object oriented design of

computer systems. The IDEF4 method provides a method for

capturing the (1) Class Submodel or object hierarchy, (2) Method

Submodel or the procedures associated with each classes of objects,

and (3) the Dispath Matching or the relationships between the

objects and methods in the object oriented design. The IDEF4 tool

will provide automated support for the IDEF4 method.

The requirements specified in this document describe the capabilities

that a fully functional IDEF3 or IDEF4 automated tool should support.

However, it is impossible for the prototype tools to be developed

under this contract to exhibit these capabilities completely. Instead,

the prototypes will attempt to address the major areas of

functionality so that the experience with those areas that will prove

most difficult can be gained and can be documented.

The requirements for the automated IDEF3 description capture tool

are found in Section 3.0. The purpose of this section is to:

(1) Document the basic structures of the IDEF3 tool

including the Unit of Behavior (UOB), Links, Junctions,

Referents, and Elaborations of the Process Flow

Description and the Object States and Arcs of the

Object Station Transition.

(2) Define the commands of the tool associated with

each structure within each mode of the IDEF3

modeling method. These commands include (as a

Introduction Knowledge Based Systems, Inc.

minimum) commands for creating, editing, deleting,

and copying these structures.

(3) Discuss organization of the IDEF3 descriptions. This

functionality will allow the user to access the

information about the scenario and decompositions of

the models.

(4) Provide the requirements for the user interface that

will support (1) browsing, (2) grouping or clustering,

and (3) report generation features of the IDEF3 tool.

(5) Provide the requirements for the IDEF3 integration to

other modeling tools, simulation modelers, and

database managers.

(6) Provide the requirements for the model management

requirements of the IDEF3 tool that will allow the

user to save and load the complete model with the

associated elaborations and decompositions.

The requirements for the automated IDEF4 design tool are defined in

Section 4.0. The purpose of this section is to:

(1) Document the basic structures of the IDEF4

tool including Classes, Class Invariant Data Sheets,

Features, Inheritance Links, Type Links, Method Sets,

and Contract Data Sheets.

(2) Define the commands of the IDEF4 tool

associated with each structure. The commands

include creating, editing, copying, and deleting each

of the various structures.

(3) Document the various "'view" diagrams

included in the IDEF4 tool including Inheritance

Diagrams, Type Diagrams, Protocol Diagrams, Method

Taxonomy Diagrams, and Client Diagrams.

(4) Provide the requirements for the IDEF4 tool

user interface. This user interface is centered around

the various views associated with the design model

being developed. As a result, the IDEF4 tool must

Introduction Knowledge Based Systems, Inc.

3

include a powerful command set to provide

effectively the automated support for a modeler.
The user interface includes the functionality to select,

find, and search through the various view diagrams.

In addition, these requirements include the

clustering or grouping operations and report

generation capabilities.

(5) Provide the requirements for the effective

integration of the IDEF4 model with other modeling

tools and utilities.

(6) Provide the requirements for the model

management requirements of the IDEF4 tool that will

allow the user to save and load the complete model

with the associated model kits.

Also, the Appendices of this Requirements document contain IDEFO
and IDEF1 models of the IDEF3 Process Flow Description Methodology

and the IDEF4 Object Oriented Design Method. The IDEFO and IDEF1

modeling methodologies provide effective means of performing

functional decomposition and information modeling, respectively.

These models were developed to illustrate the functionality and

information that the automated tools must support. Specifically,

Appendices A and B contain the IDEFO model and the IDEF1 model,

respectively, of the IDEF3 methodology, while Appendices C and D
contain the IDEFO model and the IDEF1 model, respectively, of IDEF4.

Introduction Knowledge Based Systems, Inc.

4

2.0 Knowledged Based Meta-Requirements

To build an effective tool requires that as much knowledge about the

process being automated be encoded into the tool. A modeling tool

with no understanding of the modeling methodology is usually no

more than a specialized drafting system. With an understanding of

the methodology present in the system, the tool can speed up the

modeling process by automatically validating models to ensure that

the model adheres to the rules and conventions of the methodology

and by automatically updating the model to reflect changes made by

the modeler. For example, if two objects in a model were related by

a link in some methodology and one of the objects were deleted, a
"smart" tool would want to also delete the link that related the two

objects. Though this is a simple example, it reflects the kind of

things that a knowledge based tool should do to increase the

productivity of the modeler.

Some of the capabilities required in an knowledge based tool are
listed below:

Anticipate Modeler Intentions

A tool should have an understanding of the operations to

be performed by the user. This would provide the ability

to anticipate the steps to be carried out in performing that

operation and allow the tool to automatically execute those

steps.

Revise Models Intelligently

This requirement coincides with the example given above.

Whenever an operation results in a change to a model,
revise all structures that are somehow related to the

revision so that the changes are automatically reflected in

the entire model. This could be coined as the "ripple

effect" where the system should recognize and smooth all

ripples created by a change to a model.

Incorporate Conflict Resolution Strategy

When an operation performed on a model results in a

conflict, the tool should have the ability to resolve the

conflict on its own, instead of querying the user for the

appropiate action to take.

Knowledge Based Meta-Requirements Knowledge Based Systems, Inc.

Maintain Individual Model Consistency
After every operation that would have an effect on the

model, but before the operation has been committed to the

model, the effect of the operation should be analyzed to

determine if the changes are valid. It is only after the

validity has been determined that the changes should be
reflected in model.

Maintain Merged Models Consistency

This requirement deals with the situation where two or

more valid models might be merged to produce an invalid

or inconsistent model. The tool should have the ability to

recognize that the merge will result in inconsistencies and

should have built-in strategies to resolve those conflicts so

that the resultant model will be as consistent as possible.

Support Generation of Other Models

The database structure of the tool should have the ability

to support the translation of the information represented

in a description or design model into other formats. For

example, the tool might translate the process description

into a SIMAN simulation model. The code generated by

the tool could then be run to analyze the process

description. This ability requires that the tool have an

understanding of the semantics of the model so that a

effective translation can occur.

Though the IDEF3 and IDEF4 requirements that follow in the next

two sections may not explicitly refer to these knowledge based

requirements, it is important that every operation support and abide

by the previous requirements. As a result, these knowledge based

requirements can be considered to be the modeling tool meta-
requirements.

Knowledge Based Meta-Requirements Knowledge Based Systems, Inc.

6

3.0 IDEF3 Requirements

IDEF3 is a scenario driven process flow description capture method.

Its goal is to provide a structured method for expression of the

domain experts knowledge about how a particular system or

organization works. To automate effectively the IDEF3 description

process, it is imperative that a thorough understanding of the

methodology be reflected in the tool. The sections of this paper

outline and describe the functions and capabilities necessary for a

tool to support effectively the IDEF3 modeling methodology.

Two modeling modes exist within IDEF3: process flow description and

object state transition description. A process flow description

indicates "how things work" in an organization while an object state

transition description summarizes the allowable transitions an object

may undergo throughout a particular process. The IDEF3 tool will

support both modes of information capture and will provide the

necessary functionality to integrate properly the various process

descriptions and object state transition descriptions that may be

developed to model an enterprise.

3.1 IDEF3 Entity Requirements

Both the Process Flow Description and Object State Transition

Description contain units of information that make up the

description. These entities, as we call them, are the basic units of an

IDEF3 model. Because of their atomic nature, these entities require

operations to be performed on them. This section describes the

operations that are required for the manipulation of these entities.

3.1.1 Process Flow Entity Requirements

An IDEF3 Process Flow Description captures a network of relations

between actions within the context of a specific scenario (see Section

3.2.1). The intent of this description is to show how things work in a

particular organization. Figure 1 presents an example IDEF3 Process

Flow Diagram.

IDEF3 Requirements Knowledge Based Systems, Inc.

7

Receive

Contract

,I

_ rganize

Team

21

|'3"_ Subcontractsl _

_ plPr_ning

4f

,_._i_1__ pA_vate

Hold Kick-

off Mtg.

'1

Figure 1. An Example Process Flow Diagram

An IDEF3 Process Flow Diagram consists of the following structures:

Units of Behavior (UOBs),

Junctions,

Links,

Referents, and

Elaborations.

The development of an IDEF3 Process Flow Diagram will consist of

the generation and manipulation of these model entities. The

automated IDEF3 tool should make this task as simple and as

intuitive as possible.

3.1.1.1 Unit of Behavior (UOB)

The Unit of Behavior (UOB) is the basic unit of the Process Flow

Diagram and is used to represent complex states of affairs. In a

diagram, a UOB is displayed with its label, node number, and optional

IDEFO activity reference number. Figure 2 shows how a UOB would

appear in a diagram. The label should be verb-based and provide

some indication as to what process is being represented by that

particular UOB. Though not displayed in the diagram, each UOB also

has associated with it a name that must be unique across the process

flow and a textual glossary entry to provide additional information

about the process being represented. Also, a UOB can have

IDEF3 Requirements Knowledge Based Systems, lnc.

w

decompositions (Section 3.2.2) and elaborations (Section 3.1.1.5)
associated with it.

Verb-based Label

Node # I IDEFO Ref #

Figure 2. IDEF3 Unit of Behavior

The Node # is assigned to a UOB sequentially in the order in which

the UOBs are created. But, when the process model is released, the

nodes are renumbered according to the following rules:

1) The UOBs on the top level scenario are numbered

sequentially from left to right and from top to bottom.

2) The UOBs on any subsequent diagram are numbered in

the same fashion, except that a prefix is attached with a

period to the number. The prefix is composed of the

number of the UOB linked to that scenario followed by a

period and then the letter "o" if the diagram represents

an objective view decomposition of the UOB linked to

that scenario. If the scenario represents a role view,
then use a "v" instead of an "o".

The following is a list of minimal operations that must be supported

by an automated IDEF3 tool to manipulate effectively Units of

Behavior. The description of each function gives an idea of the things

that must be done to achieve the desired functionality.

3.1.1.1.1 Create Unit of Behavior

At the time of creation of a Unit of Behavior, the user will

be allowed to input the name of the UOB, the Label of the

UOB, and any Text associated with that UOB. In addition,

the user can specify an IDEF0 activity number to provide a

cross reference with an associated activity model. When

the user has completed inputting this information, the UOB

is created, added to the model, and appears in the current

Process Flow Description.

IDEF3 Requirements Knowledge Based Systems, Inc.

9

3.1.1.1.2 Edit Unit of Behavior

At any time after creation of a Unit of Behavior, the UOB

can be edited. With this operation, the user will be

allowed to modify the Name, Label, Description, or IDEF0

activity associated with a Unit of Behavior. When this

operation is terminated, any changes made will be
reflected in the model and on the terminal screen.

3.1.1.1.3 Copy Unit of Behavior

The tool should allow form Units of Behavior to be copied.

Implicit copying will allow the same Unit of Behavior to be

referenced in the same description again or in several

different scenarios and decompositions at the same time.

But the system should also provide for the explicit copying
of a UOB. In this case, the structure of the UOB will be

copied, but no information will be stored in the new copy.

This allows the user to construct quickly UOBs that have

very similar structures (including elaboration and
decompositions) but that store different information in

those structures.

3.1.1.1.4 Delete Unit of Behavior

At any time after creation of a Unit of Behavior, the UOB

can be deleted. When the modeler chooses to perform this

operation, the tool will delete the Unit of Behavior from the

model. In addition, any ripples resulting from this deletion

will be smoothed as well. This would include things like

removing links that were attached to this UOB, removing

decompositions of the UOB from the model, and checking

other decompositions that contain this UOB to see if the

UOB should be deleted from that decomposition.

3.1.1.1.5 Unit of Behavior Coercion

Often, it may become evident that a Unit of Behavior has

evolved into its own scenario (see Section 3.2.1). As a

result, the tool should support the coercion of a Unit of
Behavior into a scenario in the current model. The name of

the UOB will become the name of the scenario. The dual of

this operation is specified in Section 3.2.1.5.

IDEF3 Requtrements Knowledge Based Systems, Inc.

10

3.1.1.2 Link Requirements

In IDEF3, links are used to denote distinguished relations between

UOBs. Figure 3 shows the different types of links supported in a

process flow diagram. The simplest link is the solid-lined Precedence

Link. The only thing represented by a precedence link is the simple

temporal precedence between the instances of one UOB type and

those of another UOB type. In other words, each instance of a UOB at

the front of the link must complete before the corresponding

instance of the UOB at the destination of the link begins. The dashed

Relational Links carry no pre-defined semantics. The merely

highlight the existence of a relationship between two or more UOBs.

The semantics of the relationship would be captured in the glossary

entry associated with the link. Finally, the Object Flow Links

highlight the participation of an object in two UOB instances. The

Object Flow Link carries the same temporal semantics as the
Precedence Link.

v Precedence Link

_- Relational Link

= Object Flow Link

Figure 3. IDEF3 Link Types

Links may start or terminate at any point on a UOB or Junction.

However, by convention, process flow diagrams are laid out so that

the flow of objects and temporal precedence is from left to right and
top to bottom.

3.1.1.2.1 Create Link

The tool will support the creation of Links. At the time of

creation, the user will be allowed to specify the type

(precedence, relational, or object flow) of link to be used

and the Units of Behavior or Junctions to be related by the

link. If a link is to be created between a Junction and

several UOBs, the tool will allow the user to input the

multiple UOBs at one time so that the number of Link

IDEF3 Requirements Knowledge Based Systems, Inc.

11

creations will be reduced. Also, at the time of creation of a

relational link, the user may optionally provide a link

description to detail the semantics of the relational link

being created.

3.1.1.2.2 Edit Link

At any time after creation of a link, the link may be edited.

This may involve changing the UOBs that are related by

the link, changing the type of the link, or editing the

description of a relational link. Once the changes are

completed, the tool should analyze the effect that the

changes would have on the model. If the change would

result in an invalid model (for example, if a precedence

link related a UOB to itself), the user should be notified

that the changes are invalid and that they are being

ignored. Otherwise, the changes are reflected in the

current model.

3.1.1.2.3 Copy Link
The tool should allow Links to be copied. When this

operation is specified for a certain link, the tool should

create a new Link in the diagram and copy the information

maintained in the original link into the new link. The only

requirement is that the modeler change at least one of the

UOBs related by the link. Otherwise, multiple links

specifying the same relationship will exist within the

model.

3.1.1.2.4 Delete Link

At any time after creation of a link, the link may be
deleted. When this occurs, the link is simply removed

from the current model.

3.1.1.3 Junction Requirements

An IDEF3 Junction is used to highlight special types of constraints on

the possible sequencing relations among UOBs. The junctions link

branches of the process flow that can proceed independently of each

other. Each junction has an associated type and sequencing

interpretation. The types supported in IDEF3 are AND, OR, and XOR.

The semantics of these types are equivalent to their logical meanings.

The sequencing interpretation can be either (1) synchronous which
means the desired effect must occur at the same time or (2)

IDEF3 Requirements Knowledge Based Systems, Inc.

12

asynchronous which means the desired effect can occur in any

sequence.

Different interpretations also exist for junctions initiating a branch

and junctions terminating a branch. A junction initiating a branch

specifies a constraint on the instantiation of the following processes

while a branch terminating a branch constrains the termination of

the processes preceding the junction. As such, it is possible for

invalid junction combinations to be specified. For example, an XOR

initiating a branch that is terminated by an asynchronous (or

synchronous) AND junction is invalid. Since the XOR specifies that

that only one of the following processes can be realized, the ending
AND condition can never be satisfied. The IDEF3 tool should

recognize these pathological situations and indicate them to the user

so that appropriate actions may be taken.

Asynchronous

Ii JunctionType

Synchronous

Junction T__ype

& AND

O OR

X XOR

Figure 4. IDEF3 Junctions

Figure 4 shows how Junctions would appear in the process flow

diagram. The asynchronous junction is represented by a box with a

line running down the left side. The synchronous junction is the

same as the asynchronous except that an additional line runs down

the right side of the box as well as the left. The type of the junction

is specified by placing the type symbol (&, O, or X) in the center of

the junction box. Note that Exclusive Or (X) requires no type of

synchronization since only one of the UOBs following the junction can

be instantiated. However, by default, an XOR junction uses the

Asynchronous box in the process diagram.

IDEF3 Requirements Knowledge Based Systems, Inc.

13

Here is the list of required operations for IDEF3 Junctions.

3.1.1.3.1 Create Junction

The tool will support the creation of Junctions. At the time

of creation, the user must specify the interpretation

(asynchronous or synchronous) and the type (AND, OR, or

XOR) of the junction. In addition, the user must specify if

the junction will be used for fan-out or fan-in purposes.

When the operation is completed, the junction will be

added to the current model.

.c.3.1.1.3.2 Add Link to Junction

After a junction has been created, it may be necessary to

add another degree to the amount of fan-in or fan-out for

the particular junction. This operation would provide the

ability to add links to the junction.

.c.3.1.1.3.3 Remove Link from Junction

After a junction has been created, it may be necessary to

add another degree to the amount of fan-in or fan-out for

the particular junction. This operation would provide the

ability to add links to the junction.

3.1.I.3.4 Edit Junction Definition

At any time after creation, the user can edit a Junction.

With this operation, the user will be allowed to modify the

junctions interpretation, type, or fan in/out purpose.

When the user completes modification of the junction, the

tool will determine if the changes cause any conflicts in the

current model. If there are problems, the user will be

notified and the changes ignored. Otherwise, the changes

will be reflected in the current model.

3.1.1.3.5 Copy Junction

The tool should allow the user to copy a Junction. When

this operation is performed, a new Junction object should
be created with the same characteristics as the original

Junction.

3.1.1.3.6 Delete Junction

At any time after creation, the user can delete a Junction.

When this occurs, the junction is removed from the current

IDEF3 Requirements Knowledge Based Systems, Inc.

14

model. In addition, any links that may be associated with

the deleted junction (see below) are also deleted.

3.1.1.4 Reference Requirements

Reference

Type/ID

Locator/Page #

Figure 5. IDEF3 Reference
A Reference allows modelers to:

• Span multiple pages in a diagram layout.

• Refer to a previously defined UOB without duplication of
its definition.

• Emphasize the description of particular objects or
relations in the elaboration.

• Tie in specific examples of referenced data or object.

• Associate special constraint sets to junctions.

• Form references of links to Object State Transition

descriptions.

Figure 5 shows how references will appear in the diagrams. A

Reference is represented by a box with a horizontal line near the

bottom. The type of information being referenced or a reference

identifier (if this reference is not defined elsewhere) is displayed in

the center of the box. Below the horizontal link, the link to the

information to be referenced is specified.

3.1.1.4.1 Create Reference

The tool will support the creation of References. At the

time of creation, the user will be prompted for the type of

information to be represented by the reference. When

completed, the reference will be added to the current
model.

3.1.1.4.2 Edit Reference

At any time after creation of a reference, the reference

may be edited by the user. If the changes to the reference

are valid, those changes will be reflected in the current
model.

IDEF3 Requirements Knowledge Based Systems, Inc.

15

3.1.1.4.3 Copy Reference
The tool should allow references to be copied. When this

operation is specified for a certain reference, a new
reference is created and added to the model. In addition,

any information that is stored in the original reference is

also copied to the new referent.

3.1.1.4.4 Delete Reference

At any time after creation of a reference, the reference

may be deleted. When this action is taken, the selected

reference is simply removed from the current model.

3.1.1.5 Elaboration Requirements

An Elaboration is a description of a Unit of Behavior in terms of

objects and constraints that exist on those objects during the unit of
behavior. IDEF3 allows for three levels of elaboration specification to

be used by the area expert, the analyst modeler, and the software

systems developer, respectively. At the first specification level, the

elaboration is expected to be captured on an elaboration form. This

form captures the information from the area expert in natural

language textual descriptions and presents this information in a

structured display that includes an object list, a fact list, and a

constraint list.

The elaboration also provides a classification structure for the

participating objects. Each object can be:

• tagged as an "agent" if that object is considered to be the

effector of the UOB;

• tagged as "affected" if the relations to that object are

created or changed by/during the UOB;

• tagged as a "participant" if no causality or
transformation is associated with that object as a part of

the UOB description;

• tagged as "created" by the UOB;

• tagged as "destroyed" by the UOB.

These classifications are optional, but do allow for automated

analysis against the format semantics of IDEF3.

IDEF3 Requirements Knowledge Based Systems, Inc.

16 ._

3.1.1.5.1 Create Elaboration

The tool should support the creation of Elaborations. An
Elaboration is attached to a UOB to describe objects that

exist within the process captured by that UOB and any

relations that may exist between these objects. When this

operation is performed, the user will identify the objects

that will be part of the elaboration and any relations

between these objects. The user must then indicate which
UOB this elaboration is to be attached to. When this is

done, the Elaboration is added to the current model and

the UOB is modified to indicate that it now has an

Elaboration.

3.1.1.5.2 Edit Elaboration

At any time after creation of an Elaboration, the

Elaboration may be edited by the user. In this manner, the

user may add, edit, or delete objects and relations from the

Elaboration. When completed, the model will be updated

to reflect the changes.

3.1.1.5.3 Copy Elaboration
The tool should allow Elaborations to be copied. When this

operation is specified for a certain Elaboration, a new
Elaboration is created and added to the model. Any

information that is maintained in the original Elaboration is

then copied into the new Elaboration.

3.1.1.5.4 Delete Elaboration

At any time after creation of an Elaboration, the

Elaboration may be deleted by the user. When this occurs,
the Elaboration is removed from the model and the UOB to

which the Elaboration was attached is updated to reflect

the removal of the elaboration.

3.1.2 Object State Transition Entity Requirements

An Object State Transition Diagram is used to capture an object

centered view of a process. This view cuts across the process

diagrams and summarizes the allowable transitions of an object in

the domain. The entities of an Object State Transition Description

are:

IDEF3 Requirements Knowledge Based Systems, Inc.

17

1) Object States

2) State Transition Arcs

3) Process Description Network References

The IDEF3 tool will allow various operations to be performed on

these entities.

3.1.2.1 Object State Requirements

An Object State is defined in terms of attributes. These attributes

may be defined in an IDEF1 model and cross referenced in the Object

State Transition Diagram. An Object State can also have Pre-

transition and Post-transition requirements associated with it. These

requirements specify the conditions that (1) must be met before a

transition can begin for pre-transition requirements or (2) must be

complete for post-transition requirements. The requirements are

specified by a list of attributes/value pairs. The values of the

attributes must match the specified values for the requirements to
be met.

Post-
I

Transition
I

Requirements
I

Object State

Description

1
Pre-

I
Transition

I
Requirements

I

Figure 6. IDEF3 Object State Description

Figure 6 shows how an object state description would appear in a

Transition diagram. The solid box represents the description of the
actual state. The dashed boxes will include the constraints that must

be met before an object state can begin (pre-transition) or end (post-

transition) a state transition.

3.1.2.1.1 Create Object State

The tool will support the creation of Object States. At the

time of creation, the user will be asked to provide the

Name, Label, and a Description of the Object State. In

addition to this descriptive information, the user may also

specify Pre-transition or Post-transition Restrictions for

IDEF3 Requirements Knowledge Based Systems, Inc.

1 8 __

the Object State during the creation of that Object State.

When this information has been input, the Object State will
be created and inserted into the current Transition

Diagram.

3.1.2.1.2 Edit Object State

At any time after creation of an Object State, the Object

State may be edited by the user. This may involve editing

the descriptive information of the Object State or adding,

deleting, or editing restrictions in the Pre-transition or

Post-transition restriction list of the Object State.

3.1.2.1.3 Copy Object State

The tool should allow Object States to be copied. When this

operation is specified for a certain object state, a new

object state is created and added to the model. Then, the

information stored in the original object state should be

copied into the new object state.

3.1.2.1.4 Delete Object State

At any time after the creation of an Object State, the Object

State may be deleted by the user. When this action is

taken, the Object State is deleted from the current diagram.

If arcs have been defined that link this Object State to

other States, those arcs are automatically removed from

the current diagram as well. In addition, if the Object State

to be deleted is used in other State Transition diagrams,

the user will be prompted to determine if the deletion

should occur in the other diagrams as well.

3.1.2.2 Transition Arc Requirements

In an Object State Transition Diagram, an Arc simply specifies a

transition from one object state to another. Each arc has a label and

a glossary description attached to it. In addition, a Reference can be

attached to the arc to specify the execution of an IDEF3 process

description before the transition can be executed.

3.1.2.2.1 Create State Transition Arc

The tool will support the creation of Arcs. At the time of

creation, the user will be asked to provide the Name, Label,

and a Description of the Arc to be created as well as

indicate the two Object States that will be linked by this

IDEF3 Requirements Knowledge Based Systems, Inc.

19

arc. In addition, the user must specify the Object State

Transition Diagram or Process Flow Diagram that will

control the transition between the two Object States to be

linked. Once this information has been provided, the arc

will be created and added to the current diagram.

3.1.2.2.2 Edit State Transition Arc

At any time after the creation of an Arc, the Arc may be

edited. This may involve editing the Name, Label, or

Description of the Arc or changing the Object States that

are linked by the Arc. With this operation, the user may

also change the Object State Diagram or Process Flow

Diagram that is attached to the Arc. When the editing is

completed, the current diagram is updated to reflect the

changes.

3.1.2.2.3 Copy State Transition Arc

The tool should allow Arcs to be copied. When this

operation is specified for a certain arc, a new arc should be

created and added to the model. Any information

represented by the arc would also be attached to the new

arc. However, the user would have to specify the new

object states to be related by this new arc.

3.1.2.2.4 Delete State Transition Arc

At any time after the creation of an Arc, the Arc may be

deleted. When this action is taken, the Arc to be deleted

would be removed from the current diagram. In addition,

any reference that the arc made to other diagrams or to

Object States would be removed as well.

3.1.2.3 Process Description Network References
Requirements

A Process Description Network Reference provides a link between an

object state transition diagram and a process description. It may be

required that the referenced process complete before the transition
can occur.

3.1.2.3.1 Create Process Description Network Reference
The tool should allow the user to create a network

reference. The user would have to provide the UOB name

IDEF3 Requirements Knowledge Based Systems, Inc.

20

or scenario name to indicate exactly which network should

be referenced.

3.1.2.3.2 Edit Process Description Network Reference

Any time after a network reference has been created, it

can be edited. This would involve changing the UOB or

scenario network referred to by the reference.

3.1.2.3.3 Copy Process Description Network Reference
The tool should allow network references to be copied. In

this situation, an additional reference to the network in the

original reference will be created and the information

copied to the new reference.

3.1.2.3.4 Delete Process Description Network Reference

Any time after a network reference has been created, that
reference can be deleted. When this occurs, the reference

to the network is removed from the transition diagram and

the diagram is updated.

3.2 IDEF3 Organization Requirements

In addition to the Entity Requirements, the IDEF3 tool will provide

the functionality to organize the entity elements into complex IDEF3

structures. The types of organization supported include:

1) Scenarios

2) Decomposition Networks

3) Object Taxonomies

4) Relational Networks

5) Scenario Correspondence

It should be noted that these structures are not the only means of

organization in an IDEF3 model. In fact, the creation of a Link or

Junction in a Process Flow Description is in itself an organizational

operation, but the operations described in this section represent

higher levels of organization that require more complex operations to

ensure that they are executed correctly.

The Scenario is the basic organizing structure for IDEF3 process flow

descriptions, and an IDEF3 model will normally contain a number of

different scenarios. A Decomposition is a breakdown of a specific

IDEF3 Requirements Knowledge Based Systems, lnc.

21

UOB in terms of other UOBs and their associated links. In actuality, a

Scenario is not much different from a Decomposition, in that both

capture process descriptions through the definitions of UOBs and

their relationships. The main difference comes from their context. A

Scenario is a subunit of the entire description while a Decomposition

is associated with a UOB. Despite the similar structure of the

Scenario and Decomposition, their difference in context requires

operations on these two structures to be separated.

3.2.1 IDEF3 Scenario Requirements

A Scenario defines a context in which to consider a particular IDEF3

description. It is reasonable to assume that the same process can be

viewed from several different perspectives. By supporting scenarios,

we allow these different perspectives to be represented in the same

model instead of requiring that each view have its own model.

3.2.1.1 Create Scenario

The tool will support the creation of Scenarios. With this

operation, the modeler will specify the name of the

Scenario to be created as well as any glossary information

or textual descriptions to be associated with the scenario.

When he has done that, the system will create all the

internal structures required to represent a Scenario. When

this has been done, the system will be ready to accept the

process description.

3.2.1.2 Edit Scenario

The purpose of this operation is to support multiple

scenarios within an IDEF3 model. In providing this

capability, we assume that the user may be making

modifications to one Scenario and then decide to make

changes to a completely different Scenario. When this

occurs and the user specifies the name of the Scenario to

edit, the system "swaps" out the old Scenario and the new

Scenario. When this is completed, modification to the

loaded Scenario, including changes to the glossary, text

descriptions, and process descriptions, can occur.

3.2.1.3 Copy Scenario

The tool should allow an entire scenario to be copied.

When this operation is specified, the entire structure of the

IDEF3 Requirements Knowledge Based Systems, Inc.

22

scenario would be duplicated and a new scenario created
and added to the model.

3.2.1.4 Delete Scenario

At any time after a Scenario has been created, the Scenario
can be deleted. If this action is taken, the current Scenario

will be deleted from the IDEF3 description. Any objects in

this Scenario that are referenced in other Scenarios will

still remain in the other Scenarios. This deletion will have

no effect on their use in other parts of the model.

3.2.1.5 Scenario Coercion

Often, a scenario that exists in an IDEF3 model may need to

be referenced in another scenario of the same model. To

support this, the tool should provide the ability to coerce a

scenario into a UOB that can be manipulated by other

scenarios.

3.2.2 IDEF3 Decomposition Network Requirements

A Decomposition is just a more detailed description of a UOB in terms

of other UOBs and their relations. Two types of decompositions exist

within IDEF3: Objective View Decompositions and (Role) View

Decompositions. Any UOB can have one Objective View and many

View decompositions. The distinguishing feature between these two

types of decompositions is their use of objects. In an Objective View,

all objects specified in the Elaboration for a UOB must be represented

in the decomposition. As such, an Objective View of a UOB cannot
exist unless the Elaboration for that UOB has already been defined. A

View decomposition is a decomposition that does not satisfy that

requirement.

Figure 7 shows the relationship between a UOB and its

decomposition. The decomposition is just an expansion of the UOB
itself and allows the modeler to describe the processes represented

by UOBs in differing levels of detail.

3.2.2.1 Create Decomposition

The tool will support the creation of Decompositions of

UOBs. With this operation, the user will be able to describe

a particular UOB in further detail. At the time of creation,

the user must specify the type (objective view or view) of

Decomposition to be created. Actually, this type is

important only when an Elaboration for the UOB to be

IDEF3 Requirements Knowledge Based Systems, Inc.

23

decomposed has been specified, since an objective view

decomposition requires that all objects specified in the

Elaboration be accounted for in the decomposition. Once

the type information has been specified, the UOB to be

decomposed is updated to indicate that a new

decomposition has been added to it and the tool

environment is updated to allow the user to begin storing

information in the decomposition.

I

I

I

/

/

/

/

/

/

Unit of

ehavior

/,
/

Figure 7. An IDEF3 Decomposition

3.2.2.2 Edit Decomposition

At any time after creation of a Decomposition, the

Decomposition can be edited. This would involve adding,

editing, or deleting UOBs, Links, or other structures to the

Decomposition. This capability would be somewhat

implicit in the tool since the Browsing functionality (see

User Interface Requirements) would allow easy movement

into and out of Decompositions. When a Decomposition is

visible, changes to that Decomposition can be made.

IDEF3 Requirements Knowledge Based Systems, Inc.

24

3.2.2.3 Copy Decomposition

The tool should allow an entire decomposition to be copied.

When this operation is specified, the entire structure of the

decomposition is duplicated in another location. It should
be noted that no new structures are created unless the

user specifically requests them. Without new structures,

any changes made to the copy will automatically be

reflected in the original decomposition.

3.2.2.4 Delete Decomposition

At any time after creation of a Decomposition, the

Decomposition can be deleted. When this action is taken,

the parent UOB of the Decomposition is updated to reflect

that this decomposition is no longer a part of that UOB. In

addition, the structures used in the decomposition will be

removed from the IDEF3 model, unless the objects are used

or are referenced by other structures in the model.

3.2.3 IDEF3 Object Taxonomy Requirements

An automated IDEF3 tool should support the development of Object

Taxonomies. These structures would define relationships between

objects that exist in the various process flows and object state

transition diagrams that make up an IDEF3 model. They are useful

in capturing information that is not easily represented in a process

flow. For example, two UOBs that have no relation (i.e., no links) to

each other within the scope of a process flow may be related because

the UOBs involve the same or similar objects. This relationship could

be captured effectively in an object taxonomy.

3.2.4 IDEF3 Scenario Correspondence Requirements

An additional organization requirement of an automated IDEF3 tool

deals with scenario correspondence of objects. The requirement here

is that objects involved within a certain scenario should be indexed

by that scenario. This would provide the ability to query a scenario

about the objects involved in the scenario.

3.3 IDEF3 User Interface Requirements

Perhaps the most critical portion of a modeling tool is the user
interface. The goal of any automated tool is to make the process

IDEF3 Requirements Knowledge Based Systems, Inc.

- 25

being automated easier to perform with the tool than without the

tool. To meet this goal in the IDEF3 tool, it is important that certain

capabilities be available to the user to promote easy movement and

access to the various components of the diagrams.

3.3.1 Browsing Requirements

The most important aspect of the IDEF3 tool user interface is the

display of the various diagrams being developed by the modeler and

the information maintained in those diagrams.

3.3.1.1 Scenario Selection

The tool should allow the user to move easily between
different scenarios in the current model. It should also be

obvious which scenario is currently selected so that the users
will not be confused.

3.3.1.2 Object State Transition Diagram Selection

The tool should allow the user to easily move between

different Object State Transition Diagrams in the current model.

It should also be obvious which transition diagram is currently
selected so that the users will not be confused.

3.3.1.3 Find References
The tool should allow to user to find all references of a

particular IDEF3 structure. This operation would return a

list of all diagrams where the specified object is
referenced.

3.3.1.4 Speed Search

Due to the size of IDEF3 process descriptions, the tool

should be equipped with a Speed Search utility. This

function would allow the user to input the name of a

particular object that he wishes to examine, and the tool

would redisplay the diagram to display the object whose

name most closely matches the partial string entered by

the user. This is equivalent to string searching in a text

editor, except that the diagram is being searched instead of

a block of text. This capability should apply to both

process flow diagrams and object state transition diagrams.

The following functions deal with movement through the process

flow diagram hierarchy.

IDEF3 Requirements Knowledge Based Systems, Inc.

26

3.3.1.5 Decomposition Selection

The tool should allow the user to move down the hierarchy

of process diagrams. After the user indicates that he

wishes to move to the decomposition of a specific UOB, the

tool should display the diagram of the desired

decomposition.

3.3.1.6 Parent Selection

This function would be the inverse operation of the

Decomposition Selection. After the user has viewed a

Decomposition, he should be able to easily move back up

the hierarchy to view the diagram in which the parent UOB
is used.

The following capabilities represent alternative viewing modes of the

IDEF3 diagrams that should be supported by the tool. Instead of

viewing the IDEF3 diagrams graphically, these modes may display
information in a list of textual information. Each of these modes

should have operations similar to those described previously in this

section to allow for rapid browsing of the information presented.

3.3.1.7 Decomposition Listing

In this mode, the tool will arrange all the UOBs in the

current view into a tree hierarchy and present this tree as

an indented list. The tree will represent the hierarchy of

the decompositions in the diagram. The top level UOBs will

be listed normally while UOBs that appear in

decompositions will be indented appropriately under the

UOB in whose decomposition the indented UOB occurs. This
mode would be useful to determine where certain UOBs

occur in the current process diagram, but when temporal

information is not necessarily important.

3.3.1.8 Elaboration Listing

This mode would perform a similar function as the

Decomposition Listing except that the Elaborations would

be indented under the UOBs instead of the Decompositions.
This information would be useful to determine which UOBs

manipulate certain objects in the environment being
modeled.

To facilitate the rapid development of these IDEF3 models, it would

also be useful if the tool could easily move between these different

IDEF3 Requirements Knowledge Based Systems, Inc.

_ 27

display modes. For example, in the Decomposition listing, once the

user has identified a particular decomposition, the tool should be

capable of displaying the process flow diagram for that

decomposition at the request of the user. As the IDEF3 models grow

in size, this type of functionality will allow for rapid searching and

movement within the model and thus provide for rapid development
and modification of the models.

3.3.2 Group Operation Requirements

To reduce the number of repeated operations, and thus to speed up

the development of IDEF3 models, it would be useful if certain

operations could be performed on groups of objects in the diagrams.

3.3.2.1 Copy Structure by Group

The tool should allow the user to select several objects

from a diagram to be copied as a single unit. By copying

the structure, the user is saying that he wants to copy how

the various objects in the unit are arranged, not the

information that is stored in the objects. For example, a

diagram may contain a UOB followed by an asynchronous

AND junction that fans out to three UOBs. At another point

in the diagram, the same structure may be required. With

this ability, the user can simply copy the structure and

then input the new information. It should be noted that

when this operation is performed, new objects are created

and added to the diagram. It is then up to the user to

input the appropriate information into the objects.

3.3.2.2 Copy Information by Group
The tool should allow the user to select several objects

from a diagram to be copied as a single unit. In this mode,

the user is copying the information stored in the structure

as well as the structure of the objects. As a result, no new

objects are created. The same objects are used in the new

location as well as in the original unit.

3.3.2.3 Delete by Group
The tool should allow the user to delete several objects

from a diagram as a single unit. After executing this

operation, the selected objects will be removed from the

current diagram. In addition, the diagram will be checked

to see if any loose ends remain from the group deletion. If

IDEF3 Requirements Knowledge Based Systems, Inc.

28

so, these conditions should be appropriately handled by
the tool.

3.3.3 Activation Visualization Requirement

It is also important that the automated IDEF3 tool provide a means to

visually view an activation of a process flow or object state

transition. An activation in this sense is roughly equivalent to a

simulation of the flow or transition description and provides modeler

to analyze his models effectively without having to use a

sophisticated simulation model. When the modeler requests an

activation, an instantiation of the process flow or state transition'

should be initialized and visual cues should be available to indicate

the status of the process flow activation.

3.3.4 Report Generation Requirements

To assist in the development of reports surrounding an IDEF3 model,

it is important that the following functions be supported.

3.3.4.1 Hardcopy

The tool should provide the ability to generate printouts of

the process flow and object state transition diagrams.

3.3.4.2 ASCII File Dump

The tool should provide the ability to generate an ASCII

file of the information maintained in and IDEF3 model.

This would enable database applications to be generated
for the information maintained in the IDEF3 models.

3.3.3.3 Note Attachment

The tool should support the attachment of notes to

description elements so that information about the

structure can be captured. These notes would be organized

in a HyperText fashion to allow the greates degree of
flexibility.

3.4 IDEF3 Integration Requirements

It is also important that the IDEF3 tool address integration with other

modeling methodologies. This is especially true since a Unit of

Behavior can directly reference an IDEFO activity and an Object State

IDEF3 Requirements Knowledge Based Systems, Inc.

29

can directly reference IDEF1 attributes. It is possible to build totally

integrated tools for each of the methodologies, but practical

limitations limit this possibility (IDEF modeling is usually performed

by a team of modelers on several machines, requiring a networked

modeling environment with a sophisticated file server to control

access to the models). Therefore, without a common database for the

different methodologies, it is important that the tool provide some

mechanism for loading information from the various models into the

IDEF3 modeling environment.

3.4.1 IDEF¢_ Integration

In IDEF3, a UOB can directly reference an IDEFO activity.

As a result, the tool should provide the ability to load in

activity and concept information from an IDEFI_ model.

3.4.2 IDEF1 Integration

In IDEF3, an object described in a UOB's elaboration or in

and Object State Transition Diagram are often derived from

entity classes maintained in an IDEF1 model. Also, the

attributes defined for an entity class can be used as part of

the pre- and post-transition requirements of an object

state. For these reasons, the tool should provide access to
information stored in IDEF1 models.

3.4.3 Consistency Maintenance

In addition to accessing the various models, it is important

to ensure consistency in the IDEFO, IDEF1, and IDEF1X

models loaded into the IDEF3 tool. If any changes are

made to the objects stored in these models, the tool should

provide the capability to download these changes so that

the original models can be updated accordingly.

3.4.4 Data Extraction

The tool should support the ability to extract information

from an IDEF3 process description for use in other

unspecified applications. This function would take

advantage of the database operations described in Section

3.5.4 to access the information the modeler requires.

3.4.5 Easy Access to Simulation Modelers

The tool should also be designed to provide easy access to

process description and object state transition data for

other modeling utilities, such as Simulation Modelers. This

IDEF3 Requirements Knowledge Based Systems, Inc.

30

is a specialized case of the Data Extraction capability

discussed above. This would allow the process captured in

an IDEF3 model to be used as part of a simulation analysis

process.

3.5 IDEF3 Information Management Requirements

Related to the development of models is the problem of model

validation. Any automated tool should provide the means to ensure

that models being created actually conform to rules and guidelines of

the methodology. As a result, the tool should have the following

capability.

3.5.1 Model Verification

The tool should have a working understanding of the IDEF3

Metamodel, a model of IDEF3 in IDEF1. This knowledge is

imperative if the tool is to be effective. Without this

information, the user would have free reign to develop any

type of construct possible with the entities of IDEF3. By

encoding the metamodel into the IDEF3 tool, the

development of valid IDEF3 models is ensured by allowing

only valid IDEF3 constructs to be created.

One of the most basic requirements, as well as the most important, is

the ability to save and reload the information stored in a model. As

a result, it is imperative that the IDEF3 tool provide these

capabilities.

3.5.2 Model Saving
The tool should allow a model to be saved. At the

completion of a modeling session, the user should be able

to save the entire model. This would include saving all

scenarios and all object state transition diagrams.

3.5.3 Model Loading
The tool should allow a model to be loaded. If models have

been saved, the user should be allowed to load any of

those models into the tool for browsing or editing

purposes. More sophisticated tools could support access

control so that only authorized users would be capable of

loading a model in an edit mode. All other users would

only be allowed to browse the model.

IDEF3 Requirements Knowledge Based Systems, Inc.

31

3.5.4 Model Database

The tool should support database-like operations to

provide for the rapid extraction of information from the

process model. The operations should allow the user to

query against the model for information related to certain

objects represented in the model.

The following two capabilities allow for a submodel to be used in

other models. These utilities should allow a portion of one model to

be written to a file and then later reloaded, as a submodel, into

another model. This capability will greatly reduce the amount of

work that must be duplicated.

3.5.5 Kit Save

The tool should allow a portion of model (kit) to be saved

to a file or database. The model portion could be a specific

scenario, decomposition, or object transition state diagram.

3.5.6 Kit Load

The tool should allow a kit to be loaded into the current

model. The user should specify where the kit is to be

loaded. If the type of the kit (scenario, decomposition, or

object state transition diagram) agrees with the type of the
location where the kit is to be loaded, the kit will be loaded

into the current model.

3.6 Summary

This section has presented the minimal functionality necessary for

the development of an effective tool for automating the IDEF3

modeling methodology. Four major areas of functionality have been

addressed: IDEF3 Entity Requirements, IDEF3 Organizational

Requirements, IDEF3 Integration Requirements, and IDEF3

Information Management Requirements. Each of these areas

represent a major segment of an automated IDEF3 tool's functionality

and should be treated as equally important when developing an

automated tool.

IDEF3 Requirements Knowledge Based Systems, Inc.

32

4.0 IDEF4 Requirements

IDEF4 is a graphically oriented methodology for the object-oriented

design of computer programs. It provides the necessary facilities to

support the object-oriented design decision making process.

Conceptually, an IDEF4 design model consists of two submodels: the
Class Submodel and the Method Submodel. These two submodels axe

linked through the Dispatch Mapping, and together these three

structures capture all the information represented in a design model.

However, due to the size of the Class and Method Submodels, the

designer never sees these structures. Instead, the designer makes

use of a collection of smaller diagrams that effectively capture the

information represented in the Class and Method Submodels.

The purpose of the IDEF4 tool is to make the creation, editing, and

viewing of these view diagrams as simple as possible. The tool must

provide the functions necessary to do this, but do so in a way that is

intuitively obvious and simple to use. If the tool does not meet this

one requirement, it will be useless since the tool will be more

difficult to use than developing the design model by hand. The

following sections outline the operations and functions we feel are

necessary to build an effective automated IDEF4 tool.

4.1 IDEF4 Concept Requirements

The concepts that exist within IDEF4 will be familiar to those with

object-oriented experience. The same structures that exist in most

object-oriented languages also exist in IDEF4. The most notable

concepts in IDEF4 axe:

Classes,

Class Invariant Data Sheets

Features,

Inheritance Links,

Type Links,

Method Sets, and

Contract Data Sheets.

This section presents these basic structures and outlines the

operations necessary to manipulate effectively these structures in an
IDEF4 model.

IDEF4 Requirements Knowledge Based Systems, Inc.

- 33

Often these operations, especially the Copy operations, may be

implicit in the tool as well as explicit. As will be discussed in Section

4.2, many different views of the same information may exist within

the IDEF4 model. Because of this, it is reasonable to assume that

these entities will be used repeatedly in different views. By

referencing these entities in different views, the user is taking

advantage of an implicit copy operation. The explicit operation

should be made available as well, so that two entities that are similar

in structure can be rapidly entered by creating one, copying that one,

and then changing the copy to represent the second one.

4.1.1 Class Requirements

The class is the basic syntactic unit in an IDEF4 design model. The

characteristics of a class are represented by a collection of features

(see Section 4.1.2). Each feature can be either public or private,

where a public feature is accessible to all classes and a private

feature is accessible only by the class and its subclasses. The power

of the object-oriented paradigm comes through the inheritance of

classes. When an inheritance relationship is specified, all features of

the parent class (superclass) are passed on to the child class

(subclass). When this occurs, the inherited features in the subclass

maintain the same characteristics as in the superclass unless they are

explicitly redefined. This inheritance provides the ability to build

complex class structures from simple classes.

Figure 8 shows how a class would appear in an IDEF4 Class

Inheritance Diagram (see Section 4.2.1). The class is represented by

a square-cornered box with the name of the class listed below the

double line at the bottom of the box. IDEF4 requires that the first

letter of the class name be capitalized. The features (see Section

4.1.2) of the class are also displayed in the class box with private

features displayed below the export line and public features

displayed above the export line. The feature symbols provide

additional information about the role that the particular feature
plays.

Listed below are the various functions necessary in an automated

tool to manipulate effectively classes in an IDEF4 design model.

IDEF4 Requirements Knowledge Based Systems, Inc.

34

4.1.I.I Create Class

The tool should support the creation of a class. At the time

of creation of a class, the user must specify a unique name

for the class to be created. Also at this time, the user may

input feature and inheritance information. If this

information is provided, the system must check the
information to ensure that no conflicts arise. For example,

if the user defines a class with a feature that it also

inherits, the system must check that this feature has been

tagged as redefined in this class and, if not, should

automatically tag the feature as redefined.

Feature

Symbols

Name

,? Employee #

@ Department

? Salary

Employee _ -"

w

Public Features

Export Line

Private Features

Class Name

Figure 8. A Class Box

4.1.1.2 Edit Class

Any time after a class has been created, the Class can be

edited. This might involve changing or editing the features

associated with the Class, adding, editing or removing an

inheritance link, or simply changing the name of the class.

Once the user has completed the changes, the modifications

will be examined to determine if any problems exist. If

everything is valid, the changes will be reflected in the

model, and all views appropriately updated.

IDEF4 Requirements Knowledge Based Systems, Inc.

35

L

4.1.1.3 Copy Class

The tool should also allow the structure of a class to be

copied. When this operation occurs, a new Class is created

by the system and the contents of the original class are

copied directly into the new class. The only requirement is

that the user give a different name to the new class. This

operation will promote rapid development of the class

hierarchy by allowing similar classes to be created from
each other.

4.1.1.4 Delete Class

At any time after creation of a class, the user should be

able to delete the Class. To perform this operation, the

user must specify if the class is to be removed from the

entire model or from the current diagram. If the class is to

be removed from the current diagram, then any reference

to the deleted class is removed from the diagram.

Otherwise, every reference to the class in the entire model
is removed.

For each class defined, the user can optionally attach a Class

Invariant Data Sheet. This sheet is used to provide additional

information about the objects in a class. The information

represented in this data sheet must be true for all objects in the class

at all times. An interesting feature of the Class Invariant Data Sheet

is that subclasses also inherit the Data Sheet of their superior.

4.1.1.5 Create Class Invariant Data Sheet

The tool should support creation of a Class Invariant Data

Sheet. After the user specifies the class to which the data

sheet is to be attached, a reference to the data sheet is

added to the class.

4.1.1.6 Edit Class Invariant Data Sheet

Any time after the creation of the Class Invariant Data

Sheet, the user should be able to edit the data sheet. Once

the appropriate changes are made to the text, the data

sheet attached to the class is updated as well as the data
sheets attached to classes that inherit from the modified

class.

IDEF4 Requirements Knowledge Based Systems, Inc.

36

4.1.1.7 Copy Class Invariant Data Sheet

The user should also be able to copy Class Invariant Data

Sheets. Because similarity is inevitable in a class

hierarchy, it is very possible that two classes might have

the same or similar invariant data sheet. For that reason, a

copy of a data sheet should be available. All the user must

do is specify the sheet to be copied and the class to attach

the copy to.

4.1.1.8 Delete Class Invariant Data Sheet

Any time after creation of a Class Invariant Data Sheet, the

user may delete that sheet. When this occurs, the

reference in the Class to the data sheet is removed. In

addition, appropriate action should be taken for any data
sheets that inherit their content from the class whose data

sheet has been deleted.

4.1.2 Feature Requirements

A feature is the named representation of a particular characteristic

of a class. The features are used to capture the behavior of instances

of a particular class. When the designer defines a feature, the type

of the feature must be specified. It is important to distinguish

between the type of the feature and the type of the value of the

feature. Feature value type is concerned with the legal values that a

feature may take or return. Feature type is concerned with the role

that a feature will play within the context of a class. A feature can

be only one of six types in an IDEF4 design model:

Feature (no symbol specified)
% Routine

') Attribute

$ Function

Procedure

@ Slot

A Routine is any feature that initiates the execution of a block of

code when queried. Also, a Routine can be classified as either a

Procedure or Function. Procedure routines perform some side-

effecting operation when executed and Functions return values. An

Attribute is any feature that returns a value when queried. In

addition, an Attribute can be classified as a value returning Function

or a Slot, which is simply a variable location in machine memory.

IDEF4 Requirements Knowledge Based Systems, Inc.

_ 37

Figure 9 shows the relationship between these feature types. The

relationship represented by the double arrow is the Can Be/Is-a

relationship, where a FEATURE can be an Attribute or a Routine and

an Attribute is a FEATURE. FEATURE represents the most general

specification whereas Procedure, Function, and Slot represent the

most specific declarations. Note that there is no feature symbol for

FEATURE. Any unlabeled feature defined in a class is automatically
defined as a FEATURE.

,/
FEATURE Function

-,,, /

Routine

Attribute

Procedure

Slot

Figure 9. Feature Type Relationships

As was noted previously, features can be inherited through class

inheritance links. However, since IDEF4 allows multiple inheritance

(having multiple superclasses), it is possible for a class to inherit the

same feature from two different classes. Also, it is possible for the

characteristics of the feature to change. When these situations

occur, the designer must redefine the feature to reflect these changes
in character.

IDEF4 Requirements Knowledge Based Systems, Inc.

38

These changes are specified through the use of the auxiliary feature

symbols shown below.

& Additional Contract

! New Taxonomic Specification
+ New Method

^ Now Public

* Now Private

These auxiliary symbols are placed to the left of the feature symbols

in the box representing the class. The Additional Contract symbol

(&) is used when a feature adds a contract to the method set to

which the class-feature pair dispatches. When the same feature is

inherited from two superclasses, the inherited feature must be

redefined in the subclass inheriting the feature. The New Taxonomic

Specification (!) is used to make this redefinition. The ! symbol also

allows an inherited feature to be redefined more specifically (i.e.,

redefining an Attribute as a Function or Slot). The New Method (+)

symbol reflects that the feature is to dispatch to a new method set
instead of to the method set to which the feature in the superclass

dispatches. If an inherited feature disagrees with its parent as to the

features visibility, the Now Public or Now Private symbol must be

used along with placing the feature on the correct side of the export
line.

4.1.2.1 Create Feature

The tool should allow Features to be created. To perform

this operation, the user must specify the name of the

feature and the class where the feature will be attached.

Also, at the time of creation, the user may optionally attach

feature symbols or auxiliary feature symbols to the feature

and specify the type, as well as the type display mode

(textual or link) of the feature.

4.1.2.2 Edit Feature

At any time after a feature is created, the Feature should

be accessible to editing. This operation might involve

changing the name of the feature, changing the class to

which the feature is attached, changing or adding feature

symbols, or changing or specifying the type of the feature.

IDEF4 Requirements Knowledge Based Systems, Inc.

39

4.1.2.3 Copy Feature

Any time after a feature has been created, the user should

be able to copy the Feature. This would be useful for

reusing a feature in several different classes that do not

inherit the feature. By creating the feature once, and

setting up its type, the user can simplify the work of

recreating the feature by simply producing a copy of the

feature and indicating the new class where the copy will

belong.

4.1.2.4 Delete Feature

Any time after a Feature has been created, the Feature

should be able to be deleted. If this operation is

performed, any reference to this feature in a class should

be removed. In addition, if any classes inherit this feature

from this class, the subclasses should be checked to see if

any redefinitions of the feature occur and any corrective

procedures executed.

4.1.3 Inheritance Link Requirements

An Inheritance Link simply defines a parent/child relationship

between two classes. When an inheritance link is specified, all

characteristics of the parent class are inherited in the child class.

Also, the inherited features will exhibit the same behavior in the

child class as in the parent class unless the features are redefined

using the auxiliary feature symbols.

4.1.3.1 Create Inheritance Link

The tool should support the creation of Inheritance Links.

The link will specify a subclass/superclass relationship

between two classes. Inheritance Links can be created

both implicitly and explicitly. If during creation of a class,

that class's superclass is specified, an implicit inheritance

link has been created. However, if inheritance is specified

between two existing classes, then an explicit creation has
occurred.

4.1.3.2 Edit Inheritance Link

Any time after an Inheritance Link has been created, it

should be possible to edit that link. This operation would

simply change the two classes related by the inheritance

IDEF4 Requirements Knowledge Based Systems, Inc.

40

link, and then update the model to reflect the change in

the class hierarchy.

4.1.3.3 Copy Inheritance Link

The tool should also allow Inheritance Links to be copied.

However, when a link is copied, the system must require

that at least one of the classes related by the link be

changed. Otherwise, a duplicate link will exist within the

system.

4.1.3.4 Delete Inheritance Link

Any time after an Inheritance Link has been created, that

Link can be deleted. This deletion could have a

tremendous effect on the class hierarchy so it is important

that the system correctly update the model to reflect the

changes made by deleting this link.

4.1.4 Type Link Requirements

A class can be considered to be a data type, and traditional

programming data types can be considered to be classes. Since the

features of classes that are classified as Attributes, or more

specifically Slots or Routines, take on values, it would be useful to

indicate the type of the value that the feature will take. These type

declarations are made with Type Links. The Type Link specifies the

feature being typed and the class that represents the legal values

that the Attribute may take.

Figure 10 shows the four different Type Links supported in IDEF4.

The first link simply says that the Attribute f of A returns a value of

Type B. The second link is identical to the first except there is also a

dual: while f of A returns a value of Type B, g of B returns a value of

Type A. This dual link reduces the number of links that might

appear in a Type Diagram and thus provides for a simpler diagram.
The third link indicates that f of A returns a value that is constructed

from B. This may be a list of instances of B or some other structure

composed of instances of B. Finally, the fourth link provides a semi-

dual for the third link type. While f of A returns a value constructed

from instances of B, g of B returns a value of Type A.

IDEF4 Requirements Knowledge Based Systems, Inc.

- 41

?, L 1IA B
f returns values of type B

i

'A B

f returns values of type B

g returns values of type A

I I
f returns values of some type

constructed from B

A B'

f returns values of some type
constructed from B

g returns values of type A

Figure 10. IDEF4 Link Types

In addition, a Type Link has two possible graphical presentations in

the Type Diagram (see Section 4.2.2). One presentation is graphical

such as in Figure 10 where a line physically links the feature with

the class representing the type of that feature's value. The second is

textual, where the feature name is followed by a colon followed by

the name of the type that the feature's value can take. The user

decides which presentation is most appropriate in presenting the

type information. It is also possible for both display methods to be
used.

4.1.4.1 Create Type Link

The tool should support the creation of Type Links. This

could be either (1) an implicit operation by specifying the

feature type when the feature is created or (2) an explicit

operation where the user specifies the feature, the type to

be linked, and the presentation method to be used for

displaying the link.

IDEF4 Requirements Knowledge Based Systems, Inc.

42

4.1.4.2 Edit Type Link

Once a Type Link is created, it should be possible to edit

that link. This may involve changing the type or changing

the display method of the link. Any changes to the Link

should be reflected in any of the Type Diagrams (see

Section 4.2.2) that display this particular type link.

4.1.4.3 Copy Type Link

The tool should also allow type links to be copied. The

only requirement in the copy operation is that the feature

that is typed by the link must be changed to a new feature.

Otherwise, a duplicate type declaration for the feature will

exist in the system.

4.1.4.4 Delete Type Link

After a Type Link has been created, the Link can be

deleted. By deleting this link, the feature's type will

return to being labelled as unspecified. Any Type Diagram

using the deleted type link will be updated to reflect this

deletion.

4.1.5 Method Set Requirements

IDEF4 does not represent individual methods. The reason for this is

that a method could accept parameters that are instances of more

than one class. As a result, the same method must be defined for

both classes. To alleviate this repetition and confusion, the
information of these methods will be maintained in a method set. A

feature of a class and that class will map to a method set. This

mapping is referred to as Dispatch Mapping.

Figure 11 shows how a method set would appear in a Method

Taxonomy Diagram. The box represents the set, with the method set

name appearing in the center. The information in the square

brackets is a list of class/routine feature pairs that map to this

particular method set. This bracketed information is optional.

A method set is defined by its associated contract. In actuality, a

method set is just a name for a contract data sheet. The contract
data sheet maintains the declarative statements that define the

intended effect of the methods in the method set. For a function, the

contract would state the relationship between the function's

argument list and the corresponding return values. For a procedure,

IDEF4 Requirements Knowledge Based Systems, Inc.

43

the contract would have to specify how the method set changed the

environment when passed an argument list and the current
environment.

Method Set Name

[class:routine,

class:routine,...]

Figure 11. Method Set Box

4.1.5.1 Create Method Set

The tool should support the creation of Method Sets. This

operation would require that a set name be given.

Optionally, the user may specify for dispatching purposes

the class/routine pairs that map to this set.

4.1.5.2 Edit Method Set

Once a method set has been created, the user should be

able to edit the method set. This might involve changing

the name of the set or changing the class/routine pairs that

map to this set. When this operation is completed, the

changes should be reflected in the method set and all

diagrams that reference this method set should be

updated.

4.1.5.3 Copy Method Set
The tool should allow a method set to be copied to reduce

the amount of repetitive data entry. The only requirement

when copying a method set is that the name of the copied

set must be changed before the copy operation can be

completed.

4.1.5.4 Delete Method Set

Once a method set has been created, that method set can

be deleted by the designer. When this operation is

IDEF4 Requirements Knowledge Based Systems, Inc.

44

performed, the method set is removed from the method

submodel and all diagrams that reference the deleted set

are updated to reflect its absence.

Operations are also required for the contract data sheet. Since a

method set simply provides a front-end to the contract data sheet,

these operation may be embedded in the operations for the method
set outlined above.

4.1.5.5 Create Contract Data Sheet

The tool should allow the user to create a Contract Data

Sheet. This operation would require the user to specify the
method set where the data sheet is to be attached.

4.1.5.6 Edit Contract Data Sheet

Once a Contract Data Sheet has been created, that data

sheet can be edited by the user. This would involve

adding, deleting, or changing contracts maintained in the
data sheet.

4.1.5.7 Copy Contract Data Sheet

Once a Contract Data Sheet has been created, that data

sheet can be copied and attached to a different method set.

This operation requires the user to specify the data sheet

to be copied and the method set where the copy is to be

attached.

4.1.5.8 Delete Contract Data Sheet

Once a Contract Data Sheet has been created, that data

sheet can be deleted. When this operation is performed,
the reference from the method set to this data sheet is

removed.

4.2 IDEF4 Diagram Requirements

Conceptually, all information in an IDEF4 model is represented in the

Class Submodel and Method Submodel, with the Dispatch Mapping

linking the two together. However, due to the large size of these

submodels, it is necessary to view the information in various

diagrams in order to understand effectively the information stored in

an IDEF4 model, These diagrams include:

IDEF4 Requirements Knowledge Based Systems, Inc.

- 45

Inheritance Diagrams

Type Diagrams

Protocol Diagrams

Method Taxonomy Diagrams

Client Diagrams

Though the type of information in each of the diagrams is restricted,

the actual content of each diagram is left for the user to decide. In

other words, the user can decide exactly what objects are displayed

in each diagram, except for the Protocol Diagram whose simplicity

does not allow this flexibility. Also, since the user can configure

these diagrams, it becomes necessary to provide the ability to

maintain several of each type of diagram. In essence, the system

will be maintaining several different views of the same information.

This section will describe the operations necessary to create and
maintain these different views of the information stored in the IDEF4

model.

4.2.1 Class Inheritance Diagram Requirements

A Class Inheritance Diagram presents the inheritance relationships

that have been defined between classes in the model. Figure 12

shows an example Class Inheritance Diagram. This diagram presents

the inheritance relationships that have been defined between classes

in the model. The boxes in the diagram represent the classes with

the arrows representing the inheritance relationship, pointing from

the parent to the child class. As the number of classes in a model can

be quite large, it would be impractical to include all the classes in one

inheritance diagram. Instead, several different Class Inheritance

Diagrams can be defined by the designer where each diagram centers

on a different group of closely related classes.

4.2.1.1 Create Class Inheritance Diagram
The tool should allow the user to create a Class Inheritance

Diagram. In performing this operation, the user is creating

a special view of the entire class submodel. As a result,

the user must specify the classes to be examined in this

view. The classes specified by the user may not be the

only classes displayed in the diagram as it may be

necessary to include other classes in the diagram to display

adequately the inheritance relationship. The tool should

have the ability to determine when these additional classes

are necessary. Also, since there may be many views, a

1DEF4 Requirements Knowledge Based Systems, Inc.

46

unique name must be given to the diagram so that the

system can distinguish between the different views.

? Label

Object

? left

? top

? right

? bottom

$ area

Rectangle

? Color

Filled-object

& ? label

Filled-rectangle

Figure 12.

IDEF4 Requirements

IDEF4 Inheritance Diagram

Knowledge Based Systems, Inc.

47

4.2.1.2 Edit Class Inheritance Diagram

Any time after an Inheritance Diagram has been created,

the user should have the ability to edit the diagram. This

would mainly involve changing the classes that are

examined in the diagram or changing the inheritance

structure of the classes in the diagram. When the changes

have been completed, the diagram should be immediately

updated. Also, any changes in the inheritance structure

should be reflected in all the diagrams that the change

would effect. The tool should also ensure that the change

does not have any adverse effect, such as unexpected

redefinition of features of classes through inheritance. If

something like this is found, the user should be notified

and should be required to take action to rectify the
situation.

4.2.1.3 Copy Class Inheritance Diagram

The tool should also provide the ability to copy an

Inheritance Diagram into another diagram or copy the

diagram as the base for a new Inheritance Diagram. This

would allow for the rapid development of similar

diagrams, since one diagram could be built from another

diagram. If the user is copying a diagram to initiate a new

diagram, the user must specify a new name for the new

diagram.

4.2.1.4 Delete Class Inheritance Diagram

Any time after an Inheritance Diagram has been created,

the user should have the ability to delete the diagram.

When this operation is performed, the diagram should be

removed from the screen and any reference to the diagram
should be removed from the model.

4.2.2 Type Diagram Requirements

A Type Diagram captures the type information associated with

features of a class. This type information is restricted to features

that are classified as attributes (?), or more specifically slots (@) or

functions ($). Also, auxiliary feature symbols and the export line are

not used in this diagram.

Figure 13 shows a sample IDEF4 Type Diagram. Notice that this

diagram uses both the textual and graphical type link display. The

IDEF4 Requirements Knowledge Based Systems, Inc.

48

display mode of the type link is defined by the modeler, but both are

used here for demonstration purposes.

? Label • StringObject

? left:Integer

? top : Integer

? right :Integer

? bottom : Integer

$ area : Integer

Rectangle

? color : Color

String

Integer

Filled-object

Color

? label:String

Filled-rectangle

Figure 13 IDEF4 Type Diagram

IDEF4 Requirements Knowledge Based Systems, inc.

49

4.2.2.1 Create Type Diagram

The tool should allow the user to create a Type Diagram.

Since several different Type Diagrams may exist as

separate views of the same model, it is necessary for each

diagram to be given a unique name. In addition, the user

must specify the classes whose features are to be the focus

of this new type diagram. The classes specified by the

user may not be the only classes displayed in the diagram,

since it may be necessary to include other classes in the

diagram to display adequately the type relationships. The

tool should have the ability to determine when these

additional classes are necessary.

4.2.2.2 Edit Type Diagram

Once a type diagram has been created, the user should

have the ability to edit the diagram. On a high level, this

would involve changing the classes that are displayed in

the diagram. But, on a lower level, the user should have

access to the features associated with a class displayed in

the diagram. This would allow editing of that feature,

possibly to change the type of the feature or to change the

display characteristic to the type link associated with the

feature. Any changes to classes or features in a type

diagram should be automatically reflected in all other

diagrams with the class or feature is associated.

4.2.2.3 Copy Type Diagram

Once a type diagram has been created, the user should be

able to copy the diagram. This operation would copy the

contents of the specified diagram into another diagram and

would allow for rapid development of different views of

the model by reducing the amount of redundant work that

must be performed.

4.2.2.4 Delete Type Diagram

Once a Type Diagram has been created, the diagram can be

deleted from the design model. When this occurs, the

diagram should be removed from the screen and any

reference to this diagram should be removed from the

design model.

IDEF4 Requirements Knowledge Based Systems, Inc.

50

4.2.3 Protocol Diagram Requirements

A Protocol Diagram maintains information on the argument list of an

Attribute, Slot, or Function feature of a class. The diagram lists the

arguments that the designer has specified for the feature. In

addition, the type of the argument is displayed in a fashion similar to

that of the Type Diagram. The type links in this diagram have the

same meaning as the links in the Type Diagram.

Rectangle

area

C result 3

()

Integer

Figure 14. IDEF4 Protocol Diagram

IDEF4 Requirements Knowledge Based Systems, Inc.

- 51

Figure 14 shows a sample Protocol Diagram for the Area routine of

the class Rectangle. The center box represents the feature whose

protocol is being specified; the boxes with rounded corners represent

arguments; and the class boxes represent the types of the arguments.

Every protocol has two default arguments, 'self' and 'result'. These

objects represent an instance of the class that the feature is a part of

and the value returned by the feature respectively.

Technically, by default, every feature of a class will have a Protocol

Diagram that will simply consist of the feature name with an

argument of 'self' and a return type of the type specified in the Type

Diagram. However, it should be left to the implementation to

determine (1) if this default protocol is to be created automatically at

the time a feature is created or (2) if the protocol is to be created by

an explicit operation performed by the modeler.

4.2.3.1 Create Protocol Diagram

The tool should support the creation of a Protocol Diagram

for a feature of a class. When this occurs, the protocol will

be given an the default Self argument and a return type of

the type specified in the Type Diagram for the feature and
class.

4.2.3.2 Edit Protocol Diagram

The user should have the ability to edit a protocol diagram.

This would involve adding, removing, or editing the

arguments to the feature protocol or changing the type of

an argument in the feature protocol.

4.2.3.3 Copy Protocol Diagram

The user should have the ability to copy a protocol

diagram. When this operation is performed, the specified

protocol diagram will be copied and then attached to a

feature associated with a class. The tool should

automatically update the new copy to reflect the feature to

which the copy has been attached (i.e., change the name).

4.2.3.4 Delete Protocol Diagram

The user should have the ability to delete a protocol

diagram associated with a feature of a class. As with the

Create Protocol Diagram, this operation will depend on the

implementation. If every feature has a default protocol

diagram upon creation of the feature, then the deletion

IDEF4 Requirements Knowledge Based Systems, Inc.

52

would simply replace the feature's current protocol

diagram with this default diagram. If a protocol diagram is

associated with a feature only through an explicit

operation, however, the deletion would remove any
reference to a protocol diagram from the feature.

When building a protocol diagram, it is necessary to add arguments

to the protocol of the feature. The following operations provide the

capability required to manipulate effectively these arguments.

4.2.3.5 Create Argument

The Create Argument operation should allow arguments to

be specified for the protocol of a feature. During this

operation, the name and the type of the argument should
be specified.

4.2.3.6 Edit Argument

The Edit Argument operation should allow the arguments

of a protocol diagram to be updated. This would mainly

involve changing the name or the type of the argument
being modified.

4.2.3.7 Copy Argument

The Copy Argument operation should allow the user to

make copies of an argument and attach the copy to the

protocol diagram, The copy would keep the same

argument type as the original, but would require the user
to change the name of the argument.

4.2.3.8 Move Argument

The Move Argument operation should allow the user to

reorder the arguments of a particular protocol diagram.

4.2.3.9 Delete Argument

The Delete Argument operation should allow the user to

remove an argument from the protocol diagram for a
feature. However, the system should not allow the Self

argument to be removed at any time.

4.2.4
Method Taxonomy Diagram Requirements

The Method Taxonomy Diagram is used to show relationships among

method sets that are independent of the class hierarchy. The

IDEF4 Requirements Knowledge Based Systems, Inc.

- 53

Diagram consists of method sets, represented by boxes as in Figure

11, and links between the method sets. The links in this diagram

represent the pure superset/subset relationship, and the arrow

points from the superset to the subset. The power of these diagrams

is seen when a particular contract has been widely used and studied.

For example, the different sorting methods can form a very complex

taxonomy, and that taxonomy can serve as a valuable resource to the

designer.

4.2.4.1 Create Method Taxonomy Diagram

The tool should support the creation of Method Taxonomy

Diagrams. When this operation is performed, the designer

must specify the method sets to be included in the

taxonomy.

4.2.4.2 Edit Method Taxonomy Diagram

Once a Method Set Taxonomy Diagram has been created,

the user should be able to edit that diagram. This

operation would involve adding or deleting method sets to

the taxonomy.

4.2.4.3 _ Copy Method Taxonomy Diagram

The designer should be able to copy Method Taxonomy

Diagrams. This would promote rapid development of the

diagrams by allowing new diagrams to be created by

copying and then making minor modifications to the copy

to arrive at a completed diagram.

4.2.4.4 Delete Method Taxonomy Diagram

Once a Method Taxonomy Diagram has been created, the

user should have the ability to delete that diagram. When

this occurs, the diagram will be removed from the Method
Submodel.

To complete Method Taxonomy Diagrams, the following operations

for the superset/subset relationship must be provided.

4.2.4.5 Create Method Set Link

To represent a superset/subset relationship between two

method sets in a Method Taxonomy Diagram, the tool must

support the creation of Method Set Links. This operation

would require that the designer specify the two method

sets to be related by the link.

IDEF4 Requirements Knowledge Based Systems, Inc.

54

4.2.4.6 Edit Method Set Link

Once a Method Set Link has been created, the designer

should be able to edit that link. This operation would

involve the user changing the method sets that are related

by the link.

4.2.4.7 Copy Method Set Link
The tool should allow a Method Set Link to be copied by

the designer. This operation would require that the

designer change at least one of the method sets related by

the original link before the copy operation can be

completed.

4.2.4.8 Delete Method Set Link

Once a Method Set Link has been created, the designer

should have the ability to delete that link. When this

occurs, any relationship between two method sets

represented by the link will be removed from the Method
Submodel.

4.2.5 Client Diagram Requirements

The Client Diagram is IDEF4's version of the structure chart. It

presents the caller/callee (client) relationship between routines and

usually centers on one particular (client) routine. In the diagram, a

routine is represented by a rectangle and a call is represented by a

line with double barbs at both ends that point from the called

routine to the calling routine. The routine box also the routine/class

pair displayed in the center, with the two name separated by a colon.
In cases where the called routine is defined in several classes, the

Client Diagram only displays one of the routine/pairs.

4.2.5.1 Create Client Diagram

The tool should support the creation of Client Diagrams.

When this operation is performed, the designer should

specify the routine/class pair that will serve as the client

and focus of the diagram. The user must also specify the

routines that are called by the client and any routines that

call the client.

4.2.5.2 Edit Client Diagram

Once a Client Diagram has been created, the designer

should have the ability to edit the diagram. This might

IDEF4 Requirements Knowledge Based Systems, inc.

- 55

involve changing the actual client, the routines that are

called by the client, or routines that call the client.

4.2.5.3 Copy Client Diagram

The designer should have the ability to copy Client

Diagrams. The only requirement of this operation is that

the user must change the Client routine before the copy

operation can be completed.

4.2.5.4 Delete Client Diagram

Once a Client Diagram has been created, the designer

should be able to delete that diagram. When this occurs,

the diagram will be removed from the Method Submodel.

4.2.6 Customized Diagram Requirements

The previous sections have described the "pure" diagrams that must

be supported by an IDEF4 tool implementation. However, it would

also be advantageous to allow the user to build customized views of

the design model by combining information maintained in several

diagrams in a single diagram. An example might be to include the

dispatching information present in the Method Taxonomy Diagram in

the Class Hierarchy Diagram. Figure 15 shows how a the Rectangle

class would appear in the diagram if the dispatching information for

the area routine were included.

? left

? top

? right
? bottom

$ area [area-for-objects]
i

Rectangle

Figure 15. Class with Dispatching Information

To facilitate these mixed mode diagrams, the tool should provide the

ability to generate customized diagrams. The following are two

diagrams that we have identified as being commonly used in an

IDEF4 design model. It is possible that more diagrams of this type

IDEF4 Requirements Knowledge Based Systems, Inc.

56

would be useful. As a result, the tool should make every effort

possible to provide for the building of these customized diagram.

4.2.6.1 Class Inheritance�Dispatching Diagram

This diagram combines the class inheritance diagram with

the method set taxonomy diagram. The diagram will look

very similar to the class inheritance diagram except that
routine features that have been dispatched to method sets

will be followed in the class box by the method set name in

square brackets. Since this diagram is very much like the

class inheritance diagram, the operations for creation and

manipulation are nearly identical to the operations for the

class inheritance diagram (see Section 4.2.1).

4.2.6.2 Class Inheritance�Type Diagram

This diagram combines the class inheritance diagram with

the type diagram. A diagram of this type will be identical

to a class inheritance diagram, except that every feature

will be followed by a colon and then its type as specified in

the type diagram. In discussing the type diagram (Section

4.2.2), we mentioned the various display modes of the type

links. This diagram will ignore the user specified display

mode and present all type information in the textual

format following the feature name. Since this diagram is

very much like the class inheritance diagram, the

operations for creation and manipulation are nearly

identical to the operations for the class inheritance

diagram (see Section 4.2.1).

4.3 IDEF4 User Interface Requirements

Perhaps the most critical portion of a modeling tool is the User

Interface. The goal of any automated tool is to make the process

being automated easier to perform with the tool than without the

tool. To meet this goal in the IDEF4 tool, it is important that certain

capabilities be available to the user to promote easy movement and

access to the various components of the diagrams.

The User Interface is especially important in an automated IDEF4

tool. The reason for this is that the IDEF4 design methodology

centers around various views of a design model. To present the class

inheritance structure would be difficult because of the potential size

IDEF4 Requirements Knowledge Based Systems, Inc.

- 57

of the diagram. Also, presenting the entire diagram would be useless

since many classes are completely unrelated to other classes in the

diagram. The views within a design model allow the user to present

logical units of the design model. As a result, the ability to move

easily between these diagram is very important.

4.3.1 Browsing Requirements

The most important aspect of the IDEF4 tool user interface is the

display of the various diagrams being developed by the modeler and

the information maintained in those diagrams.

4.3.1.1 Select Diagram

The IDEF4 design model will consist of several different

"view" diagrams. As the number of these diagrams could

grow quite large for large designs, it is important that the

tool provide the ability to move between different

diagrams easily. The Select Diagram operation will simply

allow the user to display and examine a selected diagram.

4.3.1.2 Find Diagrams

In an IDEF4 design model, it is possible for an object (class,

feature, etc...) to be used in several different diagrams. It

would be useful if the tool provided the ability to query

for all the diagrams in which a particular object appears.

This would allow a thorough examination of all the uses of

a certain object.

4.3.1.3 Speed Search

Due to the size of IDEF4 class diagrams, the tool should be

equipped with a Speed Search utility. This function would

allow the user to input the name of a particular object that

they wish to examine, and the tool would redisplay the

diagram or listing to display the object whose name most

closely matches the partial string entered by the user.

This is equivalent to string searching in a text editor,

except that the diagram is being searched instead of a
block of text.

The following capabilities represent alternative viewing modes of

information maintained in an IDEF4 design model. While the various

diagrams discussed in Section 4.2 provide an excellent mechanism

for viewing an IDEF4 design model, these alternative modes provide

IDEF4 Requirements Knowledge Based Systems, Inc.

58

a more efficient method for initially inputting class information into

the model. Instead of viewing the IDEF4 diagrams graphically, these

modes may display information as a list of textual information. Each

of these modes should support the operations described previously

to allow for rapid browsing and editing of the information presented.

4.3.1.4 Class Listing

The Class Listing mode simply displays a list of the classes

defined in the current model. Useful organization of the

classes may be appropriate as well. Two possibilities

might be simply an alphabetical listing of the classes or a

more complicated indented hierarchy listing of the classes,

where subclasses are indented below their superclass. It

might also be useful to display the features associated with
the classes.

4.3.1.5 Protocol Listing

The Protocol Listing will display a list of all the features

defined in the design model along with the protocols

defined for those features. An effective display should be

developed so that there will be no confusion with which

class a particular feature is associated.

4.3.1.6 Method Set Listing

The Method Set Listing will simply be an alphabetical

listing of all the method sets that have been defined in the

design model. Other useful information in this listing could
be the classes that have defined contracts for the

particular method sets.

4.3.2 Group Operation Requirements

To reduce the number of repeated operations, and thus to speed up

the development of IDEF4 models, it would be useful if certain

operations could be performed on groups of objects in the diagrams.

4.3.2.1 Copy Structure by Group

The tool should allow the user to copy the structure of

several objects at one time. This operation would promote

the rapid development of the design model. For example,

if two groups of classes were related in an identical

fashion, the class inheritance structure could be

established for the first group of classes and that structure

IDEF4 Requirements Knowledge Based Systems, Inc.

- 59

could be copied within this operation. The tool would

create new classes and maintain only the inheritance links
between the new classes. The user would then add the

names of the second group of classes to the copied
structure.

4.3.2.2 Copy Information by Group

The tool should allow the user to copy several objects at

one time. This operation would promote the rapid

development of several views of the design model by

allowing information displayed in one view to be easily

copied into another view. When this operation is

performed, no new objects are created. The selected

objects are will simply be referenced in the new view. As

a result, this operation will be used mainly in building up

the different views of a design model that is fully

populated with the design information.

4.3.2.3 Delete by Group

The tool should allow the user to delete several objects

from a diagram as a single unit. After executing this

operation, the selected objects will be removed from the

current diagram. In addition, the diagram will be checked

to see if any loose ends remain from the group deletion. If

so, these conditions should be appropriately handled by
the tool.

4.3.3 Report Generation Requirements

To assist in the development of reports surrounding an IDEF4 model,

it is important that the following functions be supported.

4.3.3.1 Hardcopy

An automated IDEF4 tool should provide hardcopy support

for the design models. This support should include

printing of the various view diagrams as well as a listing of

the classes and method sets that are a part of a design

model. These hardcopies could then be included in system

design documents or distributed to code developers to

clarify design issues.

IDEF4 Requirements Knowledge Based Systems, Inc.

60

4.3.3.2 ASCH File Dump

The tool should provide the ability to generate an ASCII
file of the information maintained in and IDEF4 design

model. This would enable database applications to be

generated for the information maintained in the IDEF4

designs.

4.3.3.3 Note Attachment

The tool should support the attachment of notes to design
elements so that information about the structure can be

captured. These notes would be organized in a HyperText

fashion to allow the greates degree of flexibility.

4.4 IDEF4 Integration Requirements

At the writing of this requirements document, the integration

requirements of the IDEF4 design methodology have not been

completely defined. Nevertheless, the tool should provide a general

integration facility. The most general strategy is a data extraction

facility that provides the ability to extract information maintained in

an IDEF4 design model for use in other applications. The designer

should have the ability to indicate what information should be
extracted as well as the structure that the extracted information

should be produced in.

4.5 IDEF4 Information Management Requirements

Related to the development of models is the problem of model

validation. Any automated tool should provide the means to ensure

that models being created actually conform to rules and guidelines of

the methodology. As a result, the tool should have the following

capability.

4.5.1 Model Verification

The tool should have a working understanding of the IDEF4

Metamodel, a model of IDEF4 in IDEF1. This knowledge is

imperative if the tool is to be effective. Without this

information, the user would have free reign to develop any

type of construct possible with the entities of IDEF4. By

encoding the metamodel into the IDEF4 tool, the

IDEF4 Requirements Knowledge Based Systems, Inc.

61

development of valid IDEF4 designs is ensured by allowing

only valid IDEF4 constructs to be created.

One of the most basic requirements, as well as the most important, is

the ability to save and reload the information stored in a model. As

a result, it is imperative that the IDEF4 tool provide these

capabilities.

4.5.2 Model Saving
The tool should allow a model to be saved. At the

completion of an modeling session, the user should be able

to save the entire model. This would include saving all the

view diagrams as well as the class submodel and method

submodel.

4.5.3 Model Loading
The tool should allow a model to be loaded. If models have

been saved, the user should be allowed to load any of

those models into to the tool for browsing or editing

purposes. More sophisticated tools could support access
control so that only authorized users would be capable of

loading a model in an edit mode. All other users would

only be able to browse the model.

4.5.4 Model Database

The tool should support database-like operations to

provide for the rapid extraction of information from the

design model. The operations should allow the user to

query against the design for information related to certain

objects represented in the design.

The following two capabilities allow for a submodel or diagram to be
used in other models. These utilities should allow a portion of one

model to be written to a file and then later reloaded, as a submodel,

into another model. This capability will greatly reduce the amount of

work that must be duplicated.

4.5.5 Kit Save

The tool should allow a portion of model (kit) to be saved

to a file. The model portion could be a specific diagrams or

several classes or method sets.

IDEF4 Requirements Knowledge Based Systems, Inc.

62

4.5.6 Kit Load

The tool should allow a kit to be loaded into the current

model. The user should specify whether the information

stored into the kit is to be loaded as part of the class or

method submodel or as a view diagram.

The final information management requirement deals with the life

cycle of the design maintained in an IDEF4 design model. Often, a

design loses its effectiveness over time because the programmers do

not understand a particular aspect of the design and the designer is

not around to explain why it was designed the way it was.

4.5.7 Design Life Cycle Management
The tool should provide the means to effectively capture

the designers intent, rationale, and philosophy of system

operation. This information would provide a person

studying the design with a greater understanding of how

particular aspects of the design were arrived at.

4.6. Summary

This section has presented the minimal functionality necessary for

the development of an effective tool for automating the IDEF4 design

methodology. Four major areas of functionality have been

addressed: IDEF4 Concept Requirements, IDEF4 Organizational

Requirements, IDEF4 Integration Requirements, and IDEF4

Information Management Requirements. Each of these areas

represent a major segment of an automated IDEF4 tool's functionality

and should be treated as equally important when developing an

automated tool.

IDEF4 Requirements Knowledge Based Systems, Inc.

63

Appendix A: IDEFO Model of IDEF3

°_

o
e_

<

I

_ ° _

0

0

U

.-i
Q

°.
ira,

<

Z Z

LI

LT_

qIt

jim • _

O

L_

N

L_

Index

(root), 1
Add Junction Structures for Logic description, 4

-- Bound the Context of the description, 1, 2
Browse IDEF3 Description, 1
Build and Distribute Kits, 6
Characterize object state transitions, 5

-_ Collect Data, 1, 3
Collect Names of Activities, 3
Collect Names of Objects, 3
Collect Situation Descriptions, 3
Cross Reference to IDEF1 models, 5
Cross Reference with IDEF0 and IDEF1 Models, 6

Define purpose for gathering description, 2
_ Determine initial scope of description, 2

Develop and Use IDEF3 Description, 1
Develop Decompositions for selected UOBs, 4

Develop Elaborations for each UOB, 4
Develop IDEF3 Description, 1
Extract all processes related to a specified proce, 1
Formulate Process Flow Descriptions, 1, 4
Identify activities caused by transition, 5
Identify activities required to effect transition, 5
Identify characteristics which define each state, 5

Identify criteria for enabling state transitions, 5
Identify criteria for successful transition, 5
Identify major organizational scenarios, 2
Interview Area Experts, 3
Lasso set of processes for extraction, 1

-- Layout flows within each scenario/decomposition, 4
Load IDEF3 Description, 1
Maintain IDEF3 Description, 1
Maintain linkages to other models, 1

-- Maintain Object State Descriptions, 1
Maintain Process Flow Descriptions, 1

Navigate Process Network, 1
_ Select objects of interest, 5

Select Scenario, 1
Summarize Object State Transitions, 1, 5
Trace object, extracting selected processes, 1

-- Use IDEF3 Description, 1
Validate IDEF3 Description, 1, 6
View Object State Transition Description, 1
View Process Elaboration, 1

-- Walkthrough Activations, 6

DIAGRAMS

le

cr_

co

N

IIl

i
J

v

<

,k _L

Ii

E

Z

m

c
>

_J

N

=,
.<

Z

-S_

.__o
"0

-o ._

§.
-o._

• "0

"0

r_ _

ORiG:_#_,L PAGE IS

OF POOR QUALITY

w

o

co

_D

r_

0

i

'-_m#

..d

I
i

ii

d_

-..

_k

I

I

•_ e-.,.:o_

o
"..._

t.,

m

g

N

_°

IJ

o_

0

I

_D

r" ._

!

I

I

I

_=1

LI

I
I
l,

1

_ _._.,1..,_,

1

1
l-

I!,

!

1

68

J

I

._
_,_o

aE_ ,_,
o

= -_ 6._ _-

F

I

|

H

m

I
Ji-

I

I

!
J

!

• t

• o E

-soo_

_ c_o

im

c

li: . "-_
it

lJ, _-

--o_L

!

!

•_ ._

m _
s C

u

°N "_I

oll

om .| .f'_

eJ

[]
Im o_i

!

emm
t_

t-
O

11
O

H

esu

mu

i I
! I

c_
J_

c_
qL)

c_

r_

°_ _

°q_i
_L

"-S,vm

!

i

i ,

I

I,

I "

L__Ji
|

:t

1
!

!
!

--t--
i

7111

U

I

L-

t =
-I.

.1
J _

ml

_.-___
E_ _

-__ .

.e

3_o E.

_ _-_

I "
_ .=. ___

ee _=

I

II

]

I_

_a
olin

),,
!...
Ca

Ill

,j= _ =4,)

• C:: 0

lil

_°

,.=_ .._ -=.
o

O

_ _ i_-_. _

i

i.

!

!
!,

o

o

t-
tJ

i

m

{}

°l-t

2_
{}

{}

i-
_P

mu

{}
{.}

{}

E

:i:

c_
{}

r_

L}

H

it

[

li

!

!

oma

*m

.mll

_m
@

E
Z

m
m

0

I

. I

I

I

!

J
I

¢,Q

c;

0

U

r
]

Irli

i i i
,, i J
Ill I

J

JJ l

a it s

E

,,S

0

_ 3._

_2

g

J

!

!
IJ !

i

]t:
Itl

|
!

i]Ii_ :

°-- I!]_

J - I

I

8a

J

!

tJ

=
0 IJ U

"=_

".=. _ o =

0 _ O
.= _=.

E: "m :-. o

Q,) .w.

.. _ _'__. 0 t"

_ g

.) o
_18_N

_go

• _ _

._ .g

il

i_I _

t r-

_q

t

! i

, er

-li

!
L

!
I

'IJ

'I

J

!
|

_LI__

!

_ •

L

r-,-.

m _

,_Bj

O

m_

0

o

t.- _ rJ °

.._ _ _._

i

" ""'_ i._

!

i
i

i j!i
mmm m i

°m

0._ _-

___.[

'_ 0 _ .

"j " N _c

_o =

e_
.=.
em

r_2
ee

(,-

_d

N
om

E
E

II 88

!

o R..o

_ 0

u. E'_

''_ _

, _ _,_

'._ _ __.
o

'-" =_

m

E.

ol, U

c_

c_ 0

I]

i.

i

,I

_ ,_.._

dh Ai ,_ ,

&

__2

=_ _[

N.__.-_-
==_ [.

'_g_ i"
'I
r
i

i

I, i

1

,__

2

I

J

lJll

J

t-
tJ

j Rim iI

I I

_L

0

_ °
42 4_

_ °_

omm L,)

I

ilii

.o
Ollll

l_

_m
iml

0,I

i_.

,llml

l--

elm
I_.

elml

iiiii

0
op.l

+.,, t,-,
0

_++---+t,..,

+lu

v

o_
",_

H-

!

:i

._ o=

_ ._ .=

l,ml _

e ii

I I
i k

I
i

l.t

I

*mm
r_

m

e_.

.mm

Bm

*m

e_
Ga

Imml

0

I=

I

E
0

0

0

L.

r

r_

>,
Bm

f,J
¢1

emlm

"0

J

J

!

¢)

°lu

-5

0

.

ORiGII":;-_iL i:',_,GE IS

OF POOR QUALITY

!
!

J

_ 0

J_

_mJ

0_ r¸ _i_!_ _'Y

.2

lm

I_

m

em

I

lil

t
!

!
11

!
!

,,i

L
L

1

!"

al

!

I

I
i

il
I

|
i1

58

J
J

q L,

c
o

.=
¢J
r_

.5

o_

.5 "'-

i

, "r''_'L _S
OF POOR QUALITY "--

I
D

_ D

D

o

co

i---

,dL

L_

c_

_LT1

E

J_

_r

J_

L _

I

L-

_U

z

omu

q_D

lml

Im
_J

omU

ainu
oml

c_

c_
_D

N

o_

I

..*.4--

°1
I B I_ _

li

a

_J_JJ

km..m

Ira1

,) "

r_
g= _s

-a _._

u

: !
_, ..9..

OR_._I:_._.]-_AGE IS

OF POOR QUALITY

' !

!|
im

I !

I i

OF F_.,.)L;,__._UALITY

"u-l"

i

i
I

J

iJ

o

o

"o

su

_ _._
_ °"

•a •

0_:<':°"*' _GE

O.F POOR QUALITY

I

r_

'I11

O

e-,

O

u .'"

E_ _

aJ

ORiGiNaL Pt_C-_ !S

OF POOR QUALITY

8!

|

o _0

O _

_ _._

O

O

o=

O

¢)

.'5

X

O

= _=.

=. o_ .==o

,I

O[_IC":,_L PAGE IS

OF POOR QUALITY

1

I!-:
Ill

I

I

0
em

eL
em
!_.
¢a

0
em

li

!_

_a

0

_a
oil

_J

I
!

:If

o

°l,..0 "1::

i

I

L_
I

I
i

ilj

.._ -_

_ _ _ __

•_" __ _ o

0__ _;_G_ IS

OF pi3_R QUALITY

I[

| ,

t :

I

1

x -

_j
,<

1

,i_

 j,li

l]

-i,-a_

}

iI

I

lil

t
!

I

:ii
i

m •

¢}

¢;

G_,_!NAL PAGE IS
OF POOR CJL._AL.ITY

i
!
i

li

!
!
li

i _o

m|

i___Jt
C -...i.

4

J

E
o

..o

L-

rm

_o

t_

¢.,.,
0

t

E

c#)

o.,

C_

E

_ O
_l .11

I

C__ _ _._/_. _ '_

I

I'l

J

_t
f---_

J

i
!

.i!

Q, i.

ORIG!_AL IPAGE IS

OF POOR QUALITY

!

IJ

JJ_JJ

LJ

0

j

°,_u q

E" _"

em

i

2
U *_==*

0

.=

0

0

o=

_ o

¢3 0

_-' ¢3

*-, (_

i:_.B 1., _ 0

-.! "" ._ _

I

1
5
f

i

c

¢

¢

¢

!
&l

t, i

,!i

J,i

I

U
II

I
!

..m.

!
I

o

.

°_

0 u
.E

o_

o_

"'_ "i

0

._._._._._

.N.N.N.N.N

<<<<

|

!
|

, L
T-

m

m

|

i

|

_J11

GLOSSARY
Analysis Project Objectives

This concept relates the goals of the analysis of the enterprise process.

Analysis Project Schedule and Budget

This concept represents the time and monetary constraints that exist for the analysis

project.

Candidate Processes

This concept represents a list of UOBs that have been highlighted within a particular

process description for meeting some user-defined criteria.

Causality Relations

Data Extracted From IDEF3 Descriptions

This concept refers to the information that can be derived from any part of an IDEF3

process description.

Description Change Request

This represents a formal request to make a modification to a validated IDEF3 process

description.

Description Context

This represents the scope that the process description must be developed in. It usually

determines the detail to which the description is developed.

Description Purpose

The goals of the description generation are represented by this concept. It maintains

what is to be accomplished with the completed process description.

Description Structuring Ideas

This concept represents some preliminary ideas on how the process flow description

can be structured.

Domain Expert Comments

64

These comments play a vital role in the development process. The comments provide

the majority of input to the description development.

Domain�Area Experts

These are the people that are most familiar with the process being modeled.

Enterprise Procedures

These procedures are the processes that an organization performs to achieve certain

tasks. It is these procedures that are being modeled in the process description.

Enterprise Process Descriptions

These descriptions are the documents that outline the enterprise procedures.

IDEFO and IDEF1 Cross Reference Links

These links provide references from IDEF3 process description objects to information

maintained in other IDEF0 and IDEF 1 models.

IDEFO Reference Models

These are IDEF0 models that contain information that is pertinent to the process

description being developed.

IDEF I Entity�Attribute References

These are entity descriptions as maintained in an IDEF1 reference model.

IDEFI Reference Models

These models have been referenced as containing information related to the process

description being developed.

IDEF3 A utomated Support Tools

This concept refers to the software systems used to automate the IDEF3 process

description methodology.

IDEF3 A utomated Tool Current Scenario

65

This refers to the scenario in a process model that is currently loaded in memory,

displayed by the tool, and is being examined by the user.

IDEF3 Automated Tool Loaded Description

This concept refers to a process flow description that has been loaded from the

database into the toot environment. It is assumed that the description can contain

several IDEF3 Scenarios.

IDEF3 Concepts and Procedures

This refers to the syntax, semantics, and requirements of the IDEF3 methodology.

IDEF3 Decompositions

A decomposition in IDEF3 is very similar to a decomposition in IDEF0. The

decomposition presents a more detailed description Of a UOB, in terms of other UOBs,

junctions, and finks.

IDEF3 Description Fragments

This refers to partial descriptions that have been copied for use in other descriptions or

scenarios.

1DEF3 Elaboration Object Descriptions

These descriptions provide initial information on the elaboration objects and provide

references to relevant object state transition diagrams.

IDEF3 Elaborations

An elaboration is a description of a UOB in terms of the objects that exist during the

execution of that UOB.

IDEF3 Junctions

Junctions provide the synchronization and logic for branches in a process description.

IDEF3 Kits

Kits are submodels that can be created for use in other models. If a portion of one

model is identical to a process in another model, that model portion can be Kit saved

66

and then reloaded into the other model.

IDEF3 Object Flow Relationship

An IDEF3 Object Flow Relationship simply indicates that an object that exists during

one UOB will continue to existing in the upcoming UOB.

IDEF3 Object State Descriptions

An object state description describes the object characteristics that define the

particular constraints. Simply, it defines the conditions that must be met before the

state is acquired.

1DEF3 Object States

These are the various object states that exist within a process description.

IDEF3 Objective View

IDEF 3 Post-transition Requirements

These requirements are the IDEF3 definitions of the post-transtion criteria for the

object state.

IDEF3 Pre-transition Requirements

These requirements are the IDEF3 definitions of the pre-transition criteria of the

object state.

IDEF3 Precedence Relations

These relations indicate the sequencing of UOBs within a process description.

IDEF3 Process Description References

An IDEF3 Reference Connection allows a description to refer to some piece of

information that does not appear in the current desription. The reference could be to

another process desription, UOB, scenario, IDEF0 or IDEF1 model element, or many

others.

IDEF3 Process Flow Descriptions

67

A process flow description is a description of how things work, in terms of processes

and objects that exist within those processes.

IDEF3 Scenario

A Scenario presents a certain perspective of a process description. A description of a

process can consist of many different scenarios.

IDEF3 Tool Browsing Operations

The Browsing Operations provide the ability to move around the various scenarios,

process descriptions, and object state transition descriptions.

IDEF3 Tool Grouping Operations

Tool Grouping supports the selection of multiple objects in a process description so

that operations may be performed on the entire group.

IDEF3 Tool Information Management Utilities

The Information Management provides the functions necessary for the cross

references required in a process description. For example, a UOB can be used in many

different places and these utilities keep track of all these references.

IDEF3 Units of Behavior

The Unit of Behavior (UOB) is the base unit of a process description. It has a verb

based label that indicates the nature of process being represented.

IDEF3 View

An IDEF3 View is a general UOB decomposition.

Object Descriptions

These are textual descriptions that provide information on the objects that exist within

a process.

Object State Characteristics

These are textual descriptions of the characteristics that define an object state.

Object State Updates

68

These refer to changes that must be made to object state descriptions during the

maintenance of a process description.

Objects of lnterest

This is a list of objects that seem to play important roles in the processes being

described in the model.

Post-transition Criteria

These criteria are descriptions of the general requirements that must be satisfied

before a state transition can complete.

Pre-transition Criteria

These criteria describe the constraints on an object state that must be satisfied before a

state transition can occur.

Process Flow Logic

This refers to the semantics of the links and junctions that relate the various UOBs in

a process description.

Process Flow Updates

This refers to the changes that must be made to a process flow during the maintenance

of a process description.

Process Reference

This concept refers to the situation where an elaboration or object state transition

diagram refers to another process that the expert may be interested in examining.

Reference Models

These are models (IDEF0 and IDEF1) that are references in a process description.

Scenario Names and Textual Descriptions

These are textual descriptions of the enterprise processes.

Scenario Reference

69

This concept deals with the situation where an elaboration or object state transition

diagram refers to another scenario that the expert may be interested in examining.

Selected Unit of Behavior

This references a specific UOB that is being examined.

Situation Descriptions

A situation description is a textual description of the current state of the process. This

includes information on the objects participating in the process.

Update IDEFO Reference

When a UOB is updated or changed, the IDEF0 activity changes as well. This

requires that the reference to the IDEFO model be updated.

Update 1DEFI Reference

When an Object State is updated, the IDEF1 reference sometimes changes as well.

This requires that the IDEF1 model reference be updated as well.

Updated Enterprise Process Descriptions

This represents a validated process description that has undergone a modification.

Updated IDEF3 Reference Connections

When a reference changes, the Reference Connection must be updated as well.

Updated Model References

This refers to the model references that must be updated when references to objects

maintained in those models have changed.

Updated Object State Descriptions

This refers to the new descriptions that result from modification to existing object

state descriptions.

Updated Process Flow Descriptions

70

These are the new descriptions that result from modification to validated process

descriptions.

PRECEDING PAGE BLANK NOT FILMED

127

Appendix B: IDEF1 Model of IDEF3

:!
I

i

t

i

c

E
0
L_

°_

@

Z

2

m

° '-_

r.,,i

u

o
Z

Z --

<

@

o

o_

co

_D

N

d
Z

m

,=RECEDi_G PAGE BLAIr, s, _V]" F,L_:,ED

,.

z

i ,_
z

o

p-

z

i

@

Z

O ...9

C O

I..

el
P

i
, C I

I;
!
i

i

E

.._

i

i

E
@

@

m

N

Z

i
m

@ _
I

1

.=
_e

V_

i I

o

¢c;

, |

z

N

o,9.

l=
O

l=

[-

m

¢,)

Z

_J

©

z

...1
0

,3

0
p

z

=1

j<-- q

z

o

r_

i

I;
g_

.m

@

¢_

[.=

a
,=1

o
I=

zz _=

°

_100

e_

.. _

_ _ _ _oo
"_

i _.__ ._.. ._..

. _ _ _

E

O,

Z

o

J Z

.2
I:

m

i

_z

.i
i._

m

z
0

e_

.t
L--

II

I--
II

I

m.i

g

",.=4

i,--mm.,

Z

=

o

E
Z

o

q_

i ,

Z

_P

m

_=

_L
g

n

g

0

Z
t_

_L
I:

q,i

f_

_e

o

q,I

I,,,
1,1

n ,,a

N

0

E
Z

0

0

0

Z

o

,8

_---<

I

I'm

mm

nil

E

Z

u
mm

IJ
I m

m

0

o

E
N

c

a_

m

J
a_

a_

_nm0

i

r_

o_

!!

j_

i

oo_

0 0 _

-,,s

I

L

d _

w

Z

i

I

i

A

_ j

i oo

E

I

°_ _

oo

! i
i;_ <°
"'= !::""- ii__ i i !i

I

[J2

.r"

L_

E

/.
&.

el)

u

4_

!°0

C_

_z

v _

q_r

.m

J

E

n

.E
i-

I=

N_

m_ _L

g_

8
E

i

i"l

,j

o

co

o_

Z

Z
o

,s
-8

o,P

Z

o.
m

S

L..

u

0

Z

0

o,m

0

.o

r,_

e_

0

_L

"o

_ z
P_ r_

_s
b,.,

_ Z

_ v

Z

°i

i
z--.

0

0

_J

n_
w=mm.i

E-

0

O

mJ

.2

IBj

_=

_ °

o _

0._ == ==LE ==-=-=_

= = E

z

...._

.,._

._, E

o

r. _ ._

Z _ _

0

§ _-- -_
< _:_

_ -_._
'-----1

___=

A=

c

c_
(.-

--1

m

--4

0

o
LI.

v

i=

t 4.J

! oB

c_
os

=v
¢:
-i

Z

N

Z

0

o

go

0

i_.

la

_|

3
i

5_
0

r,_

Z

I

M

©

z _,

0 -_

!t

.o

|

L

r,4

.9.°

o
..=

i °
{4

0

j_0

z

_L

E

Z

w

E
=1

Z

° i

0

"=:

_Z:

_ o

J

E

_ Z

z

z

u

/i

0

_ _. °

o o _ =, _,_ __ _'._

'. ._-,=.g.. _
_ _ ¢_-" ...=

,Q

i,m

r,
@

E

8,,

E

@

I

I

I

I" I

m

I=

_=,

r--

t.

k,

_=

I I
I
I
[

1

"-1

i
I

L
I

i !
I

I.
L

I
I

I
I
I

I I
!

t i
I
I

I
I

t

"_. Z

n--I

0

J_
E

z

_r

m

i

l
E
0

P_
I=

F--

i

' !
I ,

i

i ,

w

Iz I

E

.2

_=
4b

z _

[

I

I
!

t_
c.

i

:i

.=[

.E

z

oo-

-_-_-_-_._

OOCCC

EEE

._._._._

_z
N 0

5
z
t_
O

o_
0
,.w4

&

f_

iii

0

Lrl
m

O

z

e_

o

I-

0
L_

Bo

o _ _

o r_ o o_

r_

o o _

t_ °--

8 ,_00

c_

c_

co

J

t _ c_JI.

_. z

i
z

,,q

0

o
3'

L"

Z

Q

_.o

_G

m

¢=

8
P

[.-

N

o"

z

r_

¢=
0

[=,

•0 .. _j
_ z

0 _,. ,.m .m

_ .__

g _
_ z

".,_

N

o

N _ ee

- _ -_g
.;"'--- _ _ 0

:_o -_
.<

o

ko

z

m

Z

0

w

0

i_
a_

m

0

a

0

O

Z

v

m

=_

O

_m

m

i

0

i

g

{.,, ,

U.

i

o

° _

0

Z
lxl
@

0

e_

m

E

C

I.

a

e

E

Z
e_
@

0

1_ ...1

I
i

I
I

E

c,e

0

,J

C

o°

i

i °

)

J:J

r.l _

i ""

-" Z

0

t_
0

I=

t_

0

e_

i

I

L.

E
i

o

p_

_z

c_
t_

0

E

mE

o_

m

_=

L-

0

_zi
0.

o=
.=

J=

o

.J

o

o

o

2

_ z_
0

E

Z _ _

_ z _

_ _-_

.

U

Z

.?

_,

¢: Z

z

o

@

E

z

,,.g

.8

@

v-i

C

i i-

i

-i
z

z

5_

E

0

e-

L'=-

0 e-

I

"_ .-

?

CONNN

.._._

_=_z_

l

!

iI

o

o0

_p

Z

z

o

o

Z

m

i

J

Z

u

- _ _=

z

"i

6

£

0

Z

"r" "= _. "_.

_ E
_ ,.-1 t'.l ("4

_ z

"-_,_,_
-- _ 00>>

E

Z _ _ ,,_D '_

e i
_ z

•_. _ .I._

-- _0>>

_o

_J

Z

j..

m

E
_)

r.

.o

.S

b
E

S
<,.,

.2
w

_J

E

U.

N b,

:.T:

0

cJ

_J

z

l=

E

I=

! °

6

° Z

E

;J.

Z

q

E

3

_J

m

_ Z

P_

N

E
£

rJ_

E

_J

0
.,.._

0
°_

.E

0

0
°_

E.

0

o

8
I:

m

_B

g
.,.._

:E

Z

EEEE

Z _ _ _"q eq

z _
2

E
Z _ ,_, _"_ ,_

o _

tI___

Z--_

L

b
.g
Z

5

i _=.

rJ,
rJ_

t_. Z

r_

0

E
z

0

E

J

es

.i
r_

r_

E

r_

z

0

_s

=1
r_

;j

• 2 _ _,_

Z _¢'_ Le', u,_ t',_ t'_-g

N

i

N 2 _ ===EE

•_ _ - ._._._-°°
"_ _ ,._,,,_E_E

_ ,.=

!

E__

___._ _ __'=_=.- _ _ __=

L

_J

Z

I =

_o

,D

_ o

: z

m

£

2
c,_

.a

o

_L

Q_

_J

J

t_

mL_

t_

A

e_

0

gl

m

Im

[-

_J

0

.R

L-

e_

Q_

;-: _
=_ z 8

_ ._ ._a._

-- "," EE E

I=

._ --
"_,

• _

N

'_ ¢) o "N "N

:g_ _ _

g

_ _1_ _
i

g

g
•_. ,,
.g

• ° -_, ._, .°. N N

,_ _.=___

E

o
L0

,'=_
[-,

('N

-g
z

co

I.

_ 2

Z

ml

cs_

J

• Q

Z

c_

m

_q

Z

I'0

rio

E

@
.N

,?,,,Z,

m

E
8

o

,..,.,

o

0

-,5

2

Q

-S

E

o

.. _ ...,

._ ,=_

_I-- _:

_=

_| _

.__t z

i

I,_

I-S "_

E

Z

i,,,, *"_

?
v

,'-'

Z--

z

I
I

I

e,

,¢1

n

_=
¢11

Av

.S

m

Q

m

z

°_

.I

¢

!

¢
¢

N

J

C

c

e-

¢
¢

c

C
¢

¢

!-
,___ i_

_c

j-

• 4

: 2

N

U.

z

t_

m

E

J

_d

m

z

__ o _

E _

_ w

C,;

E

2
i-

F"

r-

J_
,m

Z

Zl

E
Z

E
Z

n-

u

,-, j_

_ E E

PRECED:._C.GpAGZ B LA_'_ ,',_TF_L_,_ED
188

Appendix C: IDEF_3 Model of IDEF4

_°

c_

°°

<

E
i.i

_C

E
..q

_L

E
J_

r_

L_
LT_

N

_b
M

o

q_

.2

e'L

_q

_b

r-

E

z

,°

Q

r_

f=

0

LT_
o_

°_r_

0
en
0

C

N

J_

m_

oo

E

-- _ .s _

°° °° °. °°

q_

_P

t,-

°,

°_

°_

o_

E

.-I

E
E

E
.-t

_v

<

Index

(root). 1
Add/Modify/Delete contracts. 4
Add/Modify/Delete protocols, 4
Analyze Function/Infccmafion/Performance reqmts., 2
Browse existing design representation, 4
Browse repository of object classes & method sets, 2
Define method set contract definitions, 8
Design Classes & Inheritance relations, 7
Design collection of method-sets, 8
Design/Maintain Object Oriented System with IDEF4, 1
Determine feature characteristics, 7
Determine Invariant properties of classes, 7
Develop and Maintain Method Taxonomy Diagrams, 6
Develop Class Submodel. 3.7
Develop Class-Routine to Method Submodel Mappings, 3, 9
Develop IDEF4 Class Invariant Data Sheets, 7
Develop IDEF4 Design Representation, 1, 3
Develop IDEF4 Inheritance Diagrams. 7
Develop IDEF4 Protocol Diagrams. 7
Develop IDEF4 Type Diagrams. 7
Develop Method Submodel. 3.8
Develop System Design Concepts, 1.2
Develop System Philosophy of Operation. 2
Distribute featm-es in class hierarchy, 7
Establish system partitioning sffategies, 2
Evai Resulting Class/Feature Elements & Structures, 7
Evolve IDEF4 Design, 1.4
Evolve Method Specification, 6
Examine Contracts of Method Sets, 2
Examine protocols and contract strucuues, 2
Identify classes with similar desired features, 2
Identify Ownership for features, 5
Identify type relations bctwen features of classes, 7
Identify what conlract a class routine conforms to, 9
Integrate New System into Existing Class Hierarchy. 6
Locate Classes in Hierarchy, 5
Organize method sets into taxonomy sm_cua,¢, 8
Prepare IDEF4 Contract Data Sheets, 8
Prepare IDEF4 Method Taxonomy Diagrams, 8
Review Method Set Contracts. 5
Review Type and Protocol Relations, 5
Specify interface of feature w/its inputs/outputs. 7
Summarize Class-Routine dispatching to method sets, 9
UIxtale IDEF4 inheritance diagrams with dispatching, 9
Use IDEF4 Design to maintain OOP software, 1, 5
Use IDEF4 Designs for Repository Descriptions, 1, 6

10

DIAGRAMS

i .

r_

o

_L

I

•,, I E

' i

PRECEDING P_=_." BLANK NU_ FILMED

.. _ _=_,_

.-_ _ ___
_ •

}

: i

!
[.

I

t
J

|

_ o

"_ .,..,,,.,"_

m

U

"l
I

;i

f_

13

D

q,1

!t
i

! •

, j,

J

lJ

rI

_E.40 l !i

0 0

_Z

I

.=_

_ =_

-H-

!

I

I

I !

ra_

o

0 :

.= -S

_ °r=.

_L

m.i

rt:

0 ._

_J

olm

0
emm

oil

L.

Q,

E
_J

oil
m

|8

o

CA_

.S

.too

CJ_

4_J
C_

°l--u

t_

¢,)

¢) ,._

..==.=_,

J

i

rl

f
t

-t

I

,if
J

¢

¢

tc

q.

_J

i

J

L____

_J

e

=

q, llm

.., _J

.a--

q.)

ru

u

f
4bm
r_

QI

r_

(J

.,mm
'ml

Ilml

r --

.,I

, |

w

J

!

B

_L

!

|

mm

,,0

J

nmml
m

0
om

omU

_L

omU

E-.
|
|

-FT
I

I:

m-i-

F_I_,

k

I ,

o

I
|

_ E
c _

i "i

ORtG!_:_L PA_. IS

OF POOR QUALITY

i'

U
I

I

Ij

I r
I

i

I_

II

fl
II

U
D

_L k ,b

I

! ,
, _ I

F_

t

I

1

I

i

o

r

u

J

I

r

CO

•i_ _

'_ i _
i

i
i

i

J_

I
I t

I

Jd

J

I

I

E
=

z

@

a_

t-

z

J
5t |

J

II,
m

J

E __•- _.
• _

."- _

._

|

|

Iti

I

I

!
11

a!

i i

i i

!,!I ,. |

.._ ._. _--

!__• ,_

_ _! .o.-.__ _ _
i

'._ _._

_. _ g_ _
N '_ _ ._ .._

_ ._ _.._

_ X

_ .i_

;++.+.!!

v..+,r_.

' iI

O
,,I

.>

-- !__="

ORIGINAL PAGE IS

OF POOR QUALITY

I

o

"+-, "S oo

+++

-+++++

,+ ._+++
•| +.+++
++ _ +++ +++

i

8

I

Ps

r

I

i
I

t
)

i

++>o,t+m

i

J

J

I
!

I

l
i

d

_ : =.

.._ •

__.-_

.. _ _ _
_. _._._, _

I

"-'t-1

I I
JJ

!

r_f
",-4--+ i

I

!f
1

im

I
1

°¢.=

,-t

. . _==

ORIGINAL PAGE IS

OF POOR QUALITY

!
a

I

I

1
!

e_

I,

i iii!

_ ._o

ORIQIN_L Pr-_CE _S

OF PO01_ OUJ!.._;:,__

I

I oliii

_P

.+i

e_
,--., rJ_

i

"tl

!if
L
t-

iii

i
J

1
I-

I 1

u_

!
1

e-- _ .m

!i o

•- _

v

LI

!°

=- _:_¢....=.

ORIGir'_IAL PAGE IS

OF POOR QUAUTY

J

!

e., x

o

!

I

|

, II

C_P'POOR QUALITY

0

_°

<

ORIGINAL PAGE IS

OF POOR QUALITY

I

li

5

i I

m

• i

, !

I
I

I
I

0

f

t

I

i

I

J

I
!
I

!i°

P

)

t

.

If:
lll,-

I --

) --

I

I

I
|

_J

m
11

! 5 @

m m m • #

o_

:: o g°
"_. _

• ._

. .I

I

i

- Z

J_

I
q

|

i,I!

i r o

i
o _

lJ

|

_ 0

U _

_ 0

II

--i

ORIGINAL PAGE IS
OF POOR QUALITY

|

C_

_l c-.

°_

,,J.B

e

I

r -

E
o
k_ I.,

.4..0 •

-_ _ __

_- __ •

. ._

'.,,,,_;_._- ?AGE IS

OF POOR QUAUTY

I

D

!

I

I

i

. |

._=

N

o ;]
1-,-.

_f
a_

.ii

q_

I

.-_,r-d"

L

L_

C

.=.

c

m

Z

w

|

i

_ . P

_ _i °

b

f-

I

I

I

. I

i

r

J_
Lr

:1

!,
!

!

.m.,.¢.

J

._-JI

L ql

i

die i"

|

il
,i

|

ti!
ii' |

L |

a.

|

J,mJ

J

1

!
J

!

m

ll.
|

!
|

_J
m

_J
mmmt

m
m

0
oU

qm)

omm

_J
_J

m_

omm

|
|

I

_L

]]

=

_>, <

L.

z

@

.=

.._

Z'

w

_lr
PJ
r|
I!

r
I

J
I

|

E__oo_

=o'_ =

,l

It,

!

!

o - m-.4

._ "_ _

,i•

J
!
!
!

I
!
J

°

!
!
!

w

GLOSSARY
Class Descriptions

A class description is a textual description of the information that is maintained by

instances of that class.

Class Inherited Features

Inherited Features are those features that have been attached to a class through an

inheritance link with another class.

Class Modifications

Since the Class and Method Submodel are developed somewhat independently, it is

only natural that when mappings are generated between the two models some

modifications to the class structures. This concept represents the changes that are

required as a result of the dispatch mapping.

Data Extracted From IDEF4 Designs

Sometimes information from IDEF4 designs can serve as valuable input to new

design models. In these cases, it is necessary to browse and extract information from

an existing design for use in a new design.

Data extracted from Requirements Analysis

The development of any system begins with a Requirements document. As a result,

the initial design step is to examine the requirements and extract the information from

the document that will effect the design of the system.

Design Change Request

No design is ever correct the ftrst time. As a result, it is often necessary to make

modifications to the design. A design change request provides a formal channel for

making modificatons to the design so that the impact of such a change will be

minimized.

Design Inconsistencies

As designs grow large, it is

inconsistent.

also possible that those designs might become

Design Project Objectives

70

This concept represents the general goals of the design project.

Design Project Schedule and Budget

This concept represents the time and monetary constraints that exist for the design

process.

Design Review Team

The Design Review Team are the people responsible for the design. It is expected that

a portion of the design is completed and then submitted to the team for examination.

Design Review Team Comments

These comments are the main thrust of the design process. Every part of the design

must undergo scrutiny by the review team. The team's comments will have a critical

effect on the design of the system.

Feature Arguments

Certain features that require computation to determine that feature's value can have

arguments that provide data for the generation of the value. These arguments are

displayed in the Protocol Diagram for the feature.

Feature Owner Classes

A feature can be owned by several classes. This concept represents the classes that all

have a particular feature in common.

Feature Return Type

A feature can either return or take a value when queried. The type of the value is

specified by the Feature Return Type.

Feature Type Relations

These relations refer to one of the four different type relationships that can be

established for a feature. See the Type Links in IDEF4 Requirements Section.

Functional Requirements

The functional requirements outline all the functions that a software system must

71

_ provide.

IDEF4 Automated Support Tools

The tools provide the functionality required to produce object-oriented designs for

software systems based on the IDEF4 design method.

IDEF 4 Class Inheritance Diagrams

The Class Inheritance Diagrams present the superset/subset relationships between

classes in the design model. The arrow between two classes in the diagram points from

the parent to the child. The child inherits all features that the parent owns.

IDEF4 Class lnvariant Data Sheet

Each class has an Invariant Data Sheet associated with it. This sheet captures in

textual format the required behavior that all instances of the class must exhibit at all

times.

IDEF4 Class Submodel

The Class Submodel maintains all the information pertaining to classes, features, and

the protocols of the features as well as the feature type and class inheritance

relationships.

IDEF4 Class-Routine Dispatching

This operation links method sets with a class-routine pair. In effect, this dispatching

provides the bridge between the class and method submodels.

IDEF4 Class-Routine Pairs

A class routine-pair is simply a relationship between a class and a feature. The pairing

indicates that the feature is owned by the class.

IDEF4 Classes

IDEF4 Classes are the main structures of the design model. The represent the structure

of the objects that will exist within the software system.

IDEF4 Concepts and Procedures

72

The Concepts and Procedures refer to the syntax, semantics, and strategies of the

IDEF4 design method.

IDEF4 Contract Data Sheets

The Contract Data Sheets maintain the contracts specified for a method set. A contract

specifies some function that a method that is a member of the method set must

perform.

IDEF4 Design Model

An IDEF4 Design Model contains the class definitions and method set definitions that

make up the design for an object-oriented software system. The design model also

maintains information on class features and their types.

IDEF4 Dispatch Mapping

The Dispatch Mapping provides the links between the Class Submodel and the

Method Submodel by link class-routine pairs with method sets.

IDEF4 Feature

A feature is a characteristic of a class and can play one of five roles:

1) attribute - can be either a slot or a function.

2) slot - references a value.

3) function - returns a value.

4) routine - a routine forces the execution of code (either

a procedure or function.

5) procedure - a side-effecting routine.

IDEF4 Method Set Relationships

The relationships are the links between method sets in a method taxonomy diagram.

The relationship specified is the pure subset/superset relationship.

IDEF4 Method Sets

Method Sets define the functionality of the system by maintaining the contracts that

must be satisfied by methods in the method set.

IDEF4 Method Submodel

73

The Method Submodel maintains all information on method sets and their contracts,

as well as client diagrams that present the caller/callee relationship between routines.

IDEF4 Method Taxonomy Diagrams

The Method Taxonomy Diagrams present the subset relationships between method

sets maintained in the Method Submodel.

IDEF4 Protocol Diagrams

The Protocol Diagrams present the argument lists of routine features. The expected

types of the arguments are also displayed in this diagram.

IDEF4 Tool Browsing Operations

The Tool Browsing Operations provide the ability to move around the various

diagrams in the Design Model. This would involve examining classes, features and

their types, as well as method sets.

IDEF4 Tool Information Management Utilities

The Information Management Utilities provide the ability to trace objects throughout

the design model. For example, this utility would be able to determine all the classes

that defined or inherited a particular feature.

IDEF4 Type Diagrams

The Type diagrams display the type relationships between features of classes. Four

different types of links are defined and indicate the allowable value types that features

can return or take.

Intermediate Class Diagrams

During the development of the class diagrams, the diagrams must be reviewed before

they are accepted as part of the design. These pre-release diagrams are the

Intermediate Class Diagrams.

Intermediate Protocol Diagrams

During the development of the protocol diagrams, those diagrams must be reviewed

before they are accepted as part of the design. These pre-release diagrams are the

Intermediate Protocol Diagrams.

74

Intermediate Type Diagrams

During the development of Type Diagrams, the diagrams must be reviewed before

they are accepted as part of the design. These pre-release diagrams are the

Intermediate Type Diagrams.

In variant Class Requirements

These requirements are constraints on instances of classes that must be true for all

instances at all times.

Lead Programmer

The Lead Programmer will have access to the design model so that questions

concerning the implementation can be answered by browsing the design model.

Method Set Modifications

Method sets can be modified during the dispatch mapping. These modifications must

be reflected in the method submodel.

Method Set Revision Request

This request provides a formal channel through which modifications to existing

method sets can be requested.

Modified Class Submodel

As a design evolves, the class submodel will be modified several times.

Modified IDEF4 Design Model

As a design evolves, the design model undergoes changes. This involves changes to

the Method Submodel as well as the Class Submodel.

Modified Method Submodel

As a design is evolving, the method submodel will be modified several times. This

modified submodel must be maintained in the design.

New Design Representation

75

This is a new representation of the design as the design is evolving. It results from the

addition of or modification to contracts or protocols.

Objects of Interest

The objects are entities that are to be manipulated by the software system that are of

special interest to the design team. It may be that these objects may eventually become

classes in the system design.

Off Diagram Classes

The off diagram classes axe those classes that are referred to in a diagram but do not

occur directly in the diagram. This reference would provide a link to the diagrams in

which the class actually does appear.

Preliminary Class Inheritance Modifications

During the development of a model, faulty inheritance relationships may be

determined. This situate will require preliminary modifications to correct the situation.

These modifications are preliminary because they occur before the design has been

completed.

Preliminary Feature Modifications

During the development of a design model, examination of the design may reveal

unexpected feature characteristics in the class hierarchy. When these are encountered,

preliminary modifications (preliminary because they occur before the design has been

released) are required.

Proposed Method Set Contracts

Before the contracts for a method set can be completely defined, it may become

evident that changes are necessary. Therefore, the original ideas on the contracts are

just the proposed contracts, not necessarily the final contracts.

Proposed Method Set Relationships

Before all the method set relationships can be defined in the design, it may become

obvious that the intended relationships will not provide an adequate design. Therefore,

the actual relationships may change with respect to the intended relationships. For this

reason, the original relationships are the proposed relationships, for they may change.

Proposed Method Sets

76

Before a Method Taxonomy can be developed, the design team must have an idea of

what method sets are required. These method sets are not always implemented as they

were originally intended so the intended method sets are labelled as proposed method
sets.

Reference Models

These models are existing IDEF4 models that might provide valuable input to the

design currently being developed.

Similar Existing Classes

These are classes that exist within IDEF4 design models that exibit similar

characteristics. This may mean they have identical features or that the features of the

class map to similar method sets that have almost identical contracts.

Similar Features

This represents the situation where the protocols and contracts are examined to

determine the features that are similar to the features necessary in the new design.

These features will provide reference to the classes that could be similar to one

currently under design.

System Design Concepts

These concepts define the "look and feel" of the software system for which the design

is being produced.

System Philosophy

The system philosophy will determine how the system will be partitioned as well as

indicated what type of features should be supported. These features will determine

which classes should be examined in the existing repository classes.

Tentative Method Sets

Tentative Method Sets precede the Proposed Method Sets. The tentative sets were

indicated as method sets that might possibly be necessary in the method submodel

while the proposed method sets are method sets that will exist in the method submodel

at some point, but that may be removed later as the design evolves.

Tentative Object Classes

77

Tentative Object Classes precede the proposed object classes. The tentative classes

are those classes that might be necessary upon an initial study of the system

requirements. The proposed classes will appear in the design model at some point but

may be deleted at a later date as the design evolves.

Updated Design Models

Updated design models are models that result from the modification or extension of

existing design models.

257

PRECEDING PAGE _LAP,:_ t'q._:i FILMED

Appendix D: IDEF1 Model of IDEF4

5 _

o

_ z

J

2_

Z

m ,--i _1

+i++
_ x

_o L. 0

i_. _

0

O
Z

z

=¢

._z
=l

_=.m

J
_z

| _=.' _-_

i

J

J_

_z

J
"C

OOzo_ __ -_CO__ ,-,

Z

J

.g

!

..o

m

u

_e

N

_o
r_

t,

al

N

g.

!

L!
t _lr

i Iw

|

,q

p_

N

t'q

t..m.

_

I :"

o .
t -
I d

L _

-!.

O

I, Z

N

J
_ e,P

o.

0

el

III

C_

_JO

C"-

|__.

_ z

m

j

@

c_

0

m

5

rrl

,i
L-

Z.

@

@

=,,,

Z ---,

._ ! z

0_

0

d

m

C3

_3

i!

i

E

j---<

m

m

a_

m

I!

u

t al

,w

4_
_J

o

, ,q

. 2

J
_=

&

o

r_

..)

C

.i i

t.m

J

!
_w

u

Z

0

LL

!

L

M

0

,.,I

e_

[---

q_

_n
Je_

m

c_

m

.E

&,

i_
,-i

! -_.

i

c_

,.n

[1

..m

u

o

m

_4

U
L_
-i

4.J

i

J

,w,

E

rL

rs_ e,_

i

Q_

e_
G_

-I

-i

I

c_

_ i_

N

l

_u

-5

r.mim

I
q_

_D
L I

r_

I

LI

! gI

.2

CS_

i

0

G_
_m

E-

2_

_8

U _

°_ _

._ L_

_z
_s

_ z

z

r_

o _

0

K

I

ii

a

r

v

.._._

I

! i

i

I I

t i

!
I

u

i

0

v

I

m

m

u

v

0

°i
_ _ o

c_

c_

_ z

N

i

i-

!
l

i I

I

L_
_r

I

0

m

i __

m N

m _

.j

m.l

z

_z

_m

_ E
•-i -i

b_

i,

E

f,,- _

8

i

E

_ z

s _

L_

b

Z

v

_w

ph_

0

0_

LI=

Q_

=j

i
.==

: i-_

P..

b.

E

__ z

m m

-=

m

i °

p,

c_

o'_

co

el

,v

c

m

=_

e_
i

Q,,

F--
I

I

I

I

i

I

,w

m;P

,ira

=1

0

!j!
-_ _ _-_--

i

i I
i

0

Lt .

,k*

m

A

m

i

.=o

o

i
=o

2

.,n_

I

m

r-

"_ Z ¸

..4 ,_"

E

z --_-

z

Z _

o |
z

._"_ _.

e_

Copies of this publication have been deposited with the Texas State Library in
compliance with the State Depository Law.

